Lecture Note for Differential Geometry Course, fall, 2023
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1 Chapter 2: Regular Surfaces.

Remark 1.1 You may have to read the Appendiz of this chapter in p.120 first, if you have forgotten
some stuff in Advanced Calculus.

1.1 The First Fundamental Form; Area (this is Section 2-5 of the text-
book).

Let S C R?® be a regular surface. The natural inner product of R?® induces on each tangent

plane 7,5 C R?® an inner product, denoted as <,>p. For any wy, wy € T,S, then (wl,w2>p is

equal to the inner product of w; and wy viewed as vectors in R3.

Definition 1.2 The map
2
I (w) = (w,w), = |wf : T,§ — R 1)

is called the first fundamental form of the regular surface S at p € S. In Linear Algebra termi-
nology, I, (w) is called a quadratic form on the tangent space T,S.

Remark 1.3 The first fundamental form is the expression of how the surface S inherits the natural
inner product of R3. One can use it to measure the length of curves on S or the area of a region on

S.

Definition 1.4 Ifx (u,v) : U C R* — R? is a local parametrization at p = x (ug,vo) € S with basis
{Xu, Xy}, then the following three functions

E (ug,v0) = (Xus Xu),,  F (U0, v0) = (Xus Xu),,, G (o, v0) = (X, X)), , (2)

are called the coefficients of the first fundamental form in the basis {x,,x,} of T,S.

Remark 1.5 Since x, (u,v) and x, (u,v) are differentiable map of (u,v) € U into R?, the three
functions
E(u,v), F(u,v), G(u,v):(u,v)elU —R

are all differentiable on U.

Ifa(t)=x(u(t),v(t)): (—e,¢e) — S is a differentiable curve with « (0) = x (ug, vo) = p, then

Lemma 1.6 The matriz

18 symmetric and positive definite.



Proof. It is clear that it is symmetric. To show positive definite, it is equivalent to saying that
FE (UQ, U[)) > O, E (UO, Uo) G (Uo, "Uo) — F2 (UQ, U[)) >0 (4)
((4) will imply that G (ug, v9) > 0 also). This is easy by the Cauchy-Schwarz inequality. OJ

Remark 1.7 One can also use definition to see that (3) is positive definite since it is the components
of an inner product, which is positive definite, or one can see that

E (ug,v9) F (ug,vo) a 9
(a,b) ( F (uo.v0) G (uo, vo) p > 0, V (a,b)#(0,0) € R
Example 1.8 Do Example 1, 2, 3 in p. 95.

We can use the first fundamental form [ to answer metric questions on S without further
references to the ambient space R®. Let a(t) : 0 € I — S C R? be a curve on S. Its arc length
parameter s is given by

S(t)Z/O !a’(t)\dtZ/O VI (! (t))dt, o’ (t) = xu (u(t) v (1) u' (t) + %0 (u (), v (8) V' ()

= /0 \/E (u(t),v () (u ()" +2F (u(t) v (8) o' (8) v’ (8) + G (u(t),v (1)) (v/ (t))dt

t
_ / VE @)+ 2000 + G (v)dt, tel. (5)
0

Remark 1.9 (Notation.) We usually write (5) as the convenient form
ds® = Edu® + 2Fdudv + Gdv?,

which means that if a (t) = x (u(t),v(t)) is a curve on S with arc length s = s(t), then

(%)2 =FE(u(t),v(t)) <%)2+2F(u(t),v(t))%Z—:JFG(u(t),v(t)) (%)2.

Remark 1.10 If S is the cylinder in Example 2 in p. 95, we have E =1, F =0, G =1 and
then

s(t):/o |o/(t)ydt:/0 \/I(o/(t))dt:/o \/(u’(t))2+(v’(t))2dt, t € (—¢¢),

i.e., the length between any two points of a (t) on S is equal to the length of its corresponding two
points on (u(t),v (t)) € U. In this case, we say the cylinder is isometric to the open set in R? :

U={(u,v) eR*:0<u<2m, —co<v<oo}CR.
From the viewpoint of "metric geometry", the cylinder is the same as the plane. How-

ever, they have different curvature (more precisely, different mean curvature).

With the help of the first fundamental form I on S, we can also discuss the angle between two
vectors on the same tangent space. In particular, if a(¢) : I — S and §(t) : I — S are two curves
on S and they intersect at t = ¢, their intersection angle 6 € [0, 7] between the two curves is defined

* (o (to) . B (t0))
o (to)| |6 (to)]

In particular, the angle ¢ between the two coordinate curves x (-, v), x (u,-) of a parametrization
x (u,v) is given by

cosf =

€[-1,1].

Uy v F
cos p = (s %) _

x| %]  VEG

Thus the coordinate curves of a parametrization x (u,v) are orthogonal everywhere if and only if
F (u,v) =0 for all (u,v). Such a parametrization is called an orthogonal parametrization.

2



Example 1.11 Do Example 4 in p. 98.

Remark 1.12 The following integral formula is for your reference when you read p. 99:

20 — 4 (cscf — cot f
/ 1 d@z/cscedez/csc 0 csc@cot@dez/de(csc co )dQ

sin 0 cscl — cot 0 cscl — cot O
1 —cosf 2sin? ¢
= log |csc f — cot 0] = log ﬂ = log | ——5—=—| = log [tan ~| .
sin @ 2sin 5 cos 5 2

1.1.1 Area Formula on a Regular Surface (this is Section 2-5 of the textbook).
Definition 1.13 See p. 99 for the definition of a (reqular) domain and region on S.
Remark 1.14 Faxplain the meaning of domain and region on S.
Recall that if a, b are two vectors in R?, then
la A\ b] = area of the parallelogram generated by a, b.

Motivated by this, if x : U — S is a local parametrization and () C U is a compact region with
boundary a piecewise smooth simple closed curve, we define the area of R =x(Q) C S as:

A(R) = //Q X, A X, | dud. (6)

We also use [[,, do to denote the area A (R) of R C S.
Lemma 1.15 The above definition does not depend on the parametrization x (u,v) .

Proof. Assume we have another parametrization X (u,v) : U C R? — S such that X (Q) =x(Q) =
R, where () C U is a compact region with boundary a piecewise smooth simple closed curve. Then
we have Q = x~! oX (Q) and due to the change of parameter function h = x ! o X one can express
(u,v) € @ = h(Q) as a function of (4,7) € Q (such a relation is a diffeomorphism). We now
have the following identities
(u,v) = h(u,v) = (u(w,v),v(u,0)),
X (u,v) =xoh(u,v) =x(u(u,v),v(u,0)),

and by the chain rule
ou ov ou @

)_(ﬂ = =Xy .
ou ou
we get

—aet (GG ) nan) 7

More precisely, (7) is the same as




Now by the change of variables formula for multiple integrals (see the book by Marsden "Elementary
Classical Analysis, 2nd edition", p. 523), we have (note that Q = h (Q))

/ |xy (u,v) A x, (u,v)| dudv

x, (h (@,7)) (7, 7))
e e

and we conclude
// % A x| dudv = / Ra A K| dudv, (10)
Q Q

i.e., the above definition is independent of the parametrizations we used. O

dudv = / Xz (@, 0) A Xy (@, 0)| dudv (9)

Remark 1.16 The assumption that the domain R C S is contained in the image of a single para-
metrization is not very serious since in most evamples there exists a parametrization x which cover
the entire surface except for some curves, which do not contribute to the area.

Remark 1.17 By the identity
% A Xv|2 + <Xuaxv>2 = |Xu|2 |Xv|2 )

we have
|Xu VAN XU|2 = |Xu|2 |Xv’2 - <XU7XU>27

i.e.
X, A Xy| = VEG — F2.

Hence we can express A(R) as

:/Q\/EG—FQdudv:A(R)I//Q \/' g“:; g“i; dudv. (11)

Example 1.18 Do Example 5 in p. 101.

1.2 Gradient on Surfaces (this is Exercise 14 in p. 104, Section 2-5, of
the textbook).

Definition 1.19 The gradient of a differentiable function f : S — R s a differentiable map
grad f: S — R, (12)

which assigns to each p € S a vector grad f (p) € T,S C R® such that (the following identity is the
definition of grad f (p))

(grad f (p) ,v)p =df, (v) forall veT,S. (13)

By property in linear algebra, the vector grad f (p) satisfying (13) exists and is unique. If there
are two vectors vy, vy € 1,S which satisfies

(v1,v) =df, (v) forall veT,S

and
(vo,v) =df, (v) forall veT,S,

then we must have v; = vy. Geometrically, one can view grad f : S — R3 as a vector field on S.
It assigns each p € S a vector grad f (p) € T,S.



Remark 1.20 For simplicity, we usually use the notation Vsf : S — T,S C R? to denote the
gradient of f : S — R on the surface S. Therefore, we have

(Vsf(p),v) =dfy(v) forall veT,S. (14)

Since Vg f is a vector field on S, it can be expressed as a linear combination of the basis
{Xu, x,}. Write
Vsf = ax, + bx,.

Then

fu=df, (x4) = (Vsf, xu) = (ax, + bx,, x,) = aE+bF, f, = (%f (x (u,v)). (15)
Similarly we have

o= dfy (x2) = (Vsf, %) = (x4 b, %) =aF £0G,  fu= 5 f(x(wr)). (16)

Hence we get the matrix relation

(5)-(Fa)(i) = (5)-(F &) (%)

and obtain, under a local parametrization x (u,v), the expression
a\ 1 G -—-F fu
b ) EG-F2\ —-F FE fo )’

_ _ qu_va fvE_qu
Vsf =ax, + bx, = eI X, + G 2 X,

In particular, we see that Vgf is a differentiable function on (u,v) € U. If S = R? with Euclidean
coordinates z, y, then we have £ =1, =0, G = 1, and the above becomes

of of
Vsf =1 == -
s (o ()
where {e;, e} is the standard basis of R?. Moreover, for a given regular surface S with orthogonal
parametrization x (u,v) : U C R? — S C R?, (17) becomes (now we have F = 0)

I
G

which implies
(17)

Vsf = %XU + (18)

Fix p € S and vary v in the unit circle |v| = 1 in 7,5 centered at p € S (denote this compact
set as S' C T),5), then df, (v) = (Vsf (p),v) € R attains its maximum value over S* C T,,S at

_ Vsf(p) ) —
0= O )= Vs ) (1)
and attains its minimum value over S* C 7,5 at
_ Vsf(p) o) = —
s A ACEE I 20)

This is clear from (13).



1.2.1 Comparing Euclidean Gradient and Surface Gradient.

Assume f : R? — R is a differentiable function and S C R? is a regular surface. We can restrict
fonto S and f|g: S — Ris also a differentiable function on S. For fixed p € S we have two gradient
vectors at p, namely V f (p) (a vector in the space T,R* &~ R? or one can say it is a vector in the
ambient space R?) and Vg f (p) (a vector in the tangent space 7,5 &~ R?). We have the following
important result:

Theorem 1.21 Let f : R? — R be a differentiable function and S C R? be a reqular surface. The
projection of the vector V f (p) € R® onto T,S is equal to Vs f (p) € T,S.

Proof. By the definition of gradient vector, we have the following:

{ (1). (Vf(p), v)=df,(v), YveR? o)
(2). (Vsf(p), v) =dfy(v), Vovel,s
If we restrict v onto the subspace T,S C R3, then (1) implies
(Vf(p), v) =df,(v), YveTl,S. (22)
Since v € T),S in (22), we have
(Vf(p), v)
= ((normal part of Vf (p) + tangential part of Vf (p)), v)
= (tangential part of Vf (p), v), VoveT,5S. (23)
Therefore, we conclude
df, (v) =(Vf(p), v) = <tangential part of V f (p), v> ., YoveT,S. (24)
By (24) and (2) in (21) and uniqueness of gradient vector, we have
Vs f (p) = tangential part of V f (p) = the projection of V f (p) onto 7,S. (25)
The proof is done. O

1.3 Stereographic Projection of S? (this is Exercise 16 in p. 69, Section
2-2, of the textbook).
Consider the sphere S? given by
24yt 4+(z—1)7° =1.

Its north pole N has coordinate (0,0,2). For any (x,y,2) € S?, consider the line L joining N
and (z,y,2). This line L will intersect the wy-plane at a unique point (u,v) € R2 The map
7 (z,y,2) € S\ (0,0,2) — (u,v) € R? is called stereographic projection of S?. To describe it,
it is easier to look at its inverse 7. Using comparison between two right triangles, we get (here

(,y,2) € 5?)
2—z2 224+ y? Vi-(G-1)7
2 Vi@ +e? Vi +o?

and let 2 — 2=\ (z =2— ) to get

6
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This gives (u? 4+ v? 4+ 4) A = 8\ and then

8 8 2 (u? 2
A= z=2-A=2- _ 2w+
uz +024+4 w2 +v24+4  u+0244

For y, we project these two right triangles onto yz-plane to get

2 _ /0,2
S-YE =Y ity >0),
2 V2 (%

which gives
2(u*+v%) 2y B 4v

Y

w4244 v YT d
Similarly, we project these two right triangles onto xz-plane to get

A
=Y =2 (ifr>0
~ (ife>0),

which gives

4 4
:r,:mizﬁu, WhereH:u2+U2+4.

We conclude

=7 )—(ﬂf(u,v),y(u,v),Z(u,v))

4v 2 (u? +0v°)
u2+v2+4 w402 +4" u2+0v2+4

=5 (4u v, 2 (v +0?)), (u,v) € R%

One can check that x is a homeomorphism from R? onto S? — { N}, differentiable from R? into
R3. Moreover

0 1
a—z (u,v) = 2 (—4u2 + 40v* + 16, —8uw, 16u) . H=u>+1*+4
ox 1
50 (u,v) = T2 (—8uv, 4u® — 4* + 16, 16v)
and so
0 0
o (.0 A = (u,)
1

D ot 54, ol ), 60 0]

In particular, we also note that

(o), Fwo)

= 7 [(—4u® + 40® + 16) (—8uv) + (—8uv) (4u® — 4v° + 16) + (16u) (16v)]
=0, V (u,v)€R%

We easily see that 9% (u, v) A 2% (u,v) # (0,0,0) for all (u,v) € R? (because 2% (u,v) L 2% (u,v) and
both are nonzero vectors). Finally we see that one can choose two stereographic projections to cover

the whole S2. One misses the north pole and the other misses the south pole.
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Finally, we compute the coefficients FE, F, G of the first fundamental form. We have

E (u,v) = (X4, Xy)
16

_ % [(—4u2 + 40 +16)° + (—8uv)® + (16u)2} = (26)
and
G (u,v) = (Xy, Xy)
= % [(—81&;)2 + (4u® — 40 + 16)2 + (161})2] = % (27)
and
F (u,v) = (xy,%y) = 0. (28)

We shall see later on that this parametrization x (u,v) : R? — S$2\{(0,0,2)} is a conformal
diffeomorphism due to

16

E (u,v) = G (u,v) = 2

F(u,v) =0, V (u,v) €R? (domain of x). (29)

2 Chapter 3: The Geometry of the (Gauss Map.

2.1 The Definition of the GGauss Map and its Fundamental Properties
(this is Section 3-2 of the book).

2.1.1 Orientation of a Regular Surface S C R3.

We first recall the following fact: Let x : U (open set) C R*> — S C R3 be a parametrization of a
regular surface. The vector
Xy N\ Xy

N(q) = =0
(q) o, A )

(¢ eR’, qeU (30)

is called the unit normal vector field on x(U) C S induced by the parametrization x.
Note: N (q) is normal to S at the point p = x(q) and N : x(U) C S — R? is a differentiable
map on x (U).

Remark 2.1 Since I did not teach Section 2.6 of the book, I will adopt the following definition for
a reqular surface S C R3 to be orientable.

Definition 2.2 A regular surface S C R? is said to be orientable if there exists a differentiable
field of unit normal vectors N : S — R? on the whole surface S. For simplicity, we just call it
a unit normal vector field on S.

Remark 2.3 There exist reqular surfaces in R3 which are not orientable. One famous example is
the Mdbius strip. See the discussion in p. 108 for it (we will not discuss it).

Remark 2.4 If there erists a parametrization x : U C R? — S C R? such that x (U) = S, then
the unit normal vector field N given by (30) is defined on the whole surface S. In such a case,
S is orientable. In particular, if S is the graph of a differentiable function f (z,y) defined on some
open set U of R?, then it is orientable.

Remark 2.5 We know that every reqular surface S is locally orientable. Hence whether S 1is
ortentable or not is a global property.



In case S is orientable, a choice of N on S is called an orientation on S (this is equivalent to
a choice of compatible coordinate neighborhoods covering S). If S is connected, there are only
two choices of N on it. Therefore, if S is connected, then it has exactly two orientations. If S has
k connected components, then it has 2 orientations.

If S is a regular surface with an orientation NN, a basis {v, w} on 7,5 is called positive if v A w
is pointing in the direction of N (p), i.e. det (v, w, N (p)) > 0. Otherwise, we say it is negative.
If {v,w} and {0,w} are two positive bases on 7,5, then its change of coordinates has positive
determinant.

The following says that the inverse image of a regular value of a differentiable function is also
orientable. Thus, in general, it is difficult to find nonorientable surfaces in R3.

Lemma 2.6 Let f : U C R® — R be a differentiable function and a € f (U) is a regular value of
f. Then the surface

18 orientable.

Proof. We know that the gradient vector (it is a nonzero vector since a is a regular value)

(&f of of

vf (xayvz) = %(l‘a?%z’)) a_y(x7yvz)v 0_y(l‘7yaz))7 (%%2’) € S

is everywhere perpendicular to S. Thus

Vf(z,y,2)
Nx7yaz T NE x,y,z GS
R e N
is a unit normal field on S. By Definition 2.2, S is orientable. U

Another important result is the following;:

Lemma 2.7 Any compact regular surface S C R? is orientable. Therefore, spheres and ellipsoids
in R3 are both orientable.

Proof. Omit it. U

2.1.2 Gauss Map of a Regular Surface S C R3.

Throughout this chapter (Chapter 3 of the textbook), unless otherwise stated, we
always assume that S is orientable with a chosen orientation N. For simplicity, we call
S a regular surface with an orientation N.

Definition 2.8 Let S C R? be a regqular surface with an orientation N. The map N : S — R3 has
1ts values in the unit sphere

S?={(z,y,2) eR*: 2’ +y* + 2> =1}.
Thus we can write it as N : S — S? and call it the Gauss map of S.

Remark 2.9 Since N : S — R3 is differentiable (this is due to definition), by p. 77, Example 3,
we know that N : S — S? is also differentiable. One can also use local parametrization to verify
this. Its differential AN, : T,S — Tn()S* can be viewed as a linear map from T,S — T,S because
one can identify T S* and T,S (they are parallel planes in R?; both planes are normal to N (p)).
For any v € T,,S, choose a(t) € S, t € (—¢,¢), so that « (0) = p, o (0) =v. Then we have

AN, (0) = | N(a (1)), (31)



or more generally,

oty (0 (1) = TN (@ (1)), V1€ (~=.2).

If we write a (t) as x (u(t),v(t)) with a (0) =x(u(0),v(0)) = p then
N(a(t) =N (x(u(t),v(t)))

and for simplicity we will just write N (x (u (t),v (t))) as N (u(t),v(t)) with the understanding
that N (u,v) is actually N (x (u,v)). By this, we have

EN (@) = SN (ut),0(1) = Nu(ut) v ()l () + N (u () 0 () (1), ¥t (~=,6)

Cdt
and
d

dt

t:o TV

N (a(t)) as

On the other hand, we can also write the above %}tzo

d
g N

— AN, (o (0)) = dN, [/ (0)x, + v/ (0)x,] = u (0) AN, (x,) + ¢/ (0) AN, (x.)

In particular, we note that
Nu(p) = dNp (xu), Ny (p) = dN, (%), (32)
where x,, and x, in (32) are evaluated at (u (0),v (0)) € U.
Example 2.10 Do Example 2 in p. 139.
Example 2.11 Do Example 3 in p. 141. In this example, we have
dN (' (t),y' (1), 2" (1)) = (=2 (t) , =¥/ (1) , 0) ,
which can be written as
dN [(2' (t) 4/ (£),0) +(0,0,2"(£))] = (=" (t), =¥/ (£) , 0) .
Thus the differential dN, : T,,S — T,S has two eigenvalues 0 and —1.

Example 2.12 Do Example 4 in p. 141. In this example, we have x (u,v) = (u,v,v* —u?), (u,v) €
R2, and we choose

B u —v 1
\/u2+v?+%L \/u2+v2+}L 2\/u2+v2+}l

Hence at p = (0,0,0) = x(0,0) we have x, (0,0) = (1,0,0) and x, (0,0) = (0,1,0) and

AN, ((1,0,0)) = AN, (x, (0,0)) = = N Ge(u0) = 2. N (wo)
0 U 1
= % 0 = (2,0,0),

w=0 \\Jur+1 243 /ut+ 1
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and similarly

0 0
dN, ((0,1,0)) = dN, (x, (0,0)) = 50 N (x(0,v)) = 50 N (0,v)
v=0 v=0
0 —v 1
- — 0, : =(0,-2,0).
v |, \/112—1-% 2\/v2~|—i

In general, we have

d d
G, N = N, em)

— dN, (' (0) %, (0,0) + v/ (0) x, (0,0)) = (2’ (0), —20' (0),0),

1.€.,

AN, (' (0) v/ (0),0) = (2u' (0), =20/ (0) ,0).
Thus AN, : T,S — T,S has two eigenvalues 2 and —2 with corresponding eigenvectors x,, (0,0) =
(1,0,0) and x, (0,0) = (0,1,0).

Example 2.13 Do Ezample 5 in p. 140. In this example, we have x (u,v) = (u,v,u* + kv?), (u,v) €
R2, where

Xy (u,v) = (1,0,2u), x, (u,v) =(0,1,2kv),

Xy (U, v) A Xy (u,v) = (—2u, —2kv, 1),
and we choose

X, N\ X,

N (u,v) = N (x(u,v)) = (u,v)

% A x|
u kv -1
\/u2+k21)2—|—4—i \/u2+l€21)2—|—4—1l 2\/u2—|—k2v2+%1

Hence at p = (0,0,0) we have x, (0,0) = (1,0,0) and x, (0,0) = (0,1,0) and

dN, ((1,0,0)) = dN, (x,(0,0)) = 6% N (u,0) =(2,0,0),
and similarly

dN, ((0,1,0)) = dN, (x, (0,0)) = % N (0,v) = (0,2k,0).
In general, we have -

d d

7 tZON(u &), v(®) = - t:ON(X (u(t),v (1))

= dN, [u (0) x, (0,0) + o' (0)x, (0,0)] = (2u' (0) , 2kv (0) ,0),

1.e.,

AN, (o (0),0/ (0),0) = (2 (0) , 2K/ (0) ,0)
Thus dN, : T,S — T,S has two eigenvalues 2 and 2k with corresponding eigenvectors x,, (0,0) =
(1,0,0) and x, (0,0) = (0,1,0).

Proposition 2.14 (This is Proposition 1 in p. 142.) For each p € S. the differential dN,, :
T,S — T,S of the Gauss map 1is a self-adjoint linear map.
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Remark 2.15 Read the appendix "self-adjoint linear map and quadratic forms" in p.217-219 by
yourself.

Remark 2.16 Note that with respect to an orthonormal basis {vi,v2} on 1,5,

the matriz representation M for dN, : T,S — T,S is symmetric. If the basis {vi,v2} is not
orthonormal, M may not be symmetric in general. In particular, the matriz for the linear
map dN, : T,5 — T,S with respect to a parametrization basis {x,,x,} may not be symmetric
i general.

Proof. Fix p € S and assume x (u,v) : U C R? — S C R? is a parametrization of S around p with
x (¢) = p. We already know that dN,, : 7,5 — T,S is linear and {x,,x,} (evaluated at ¢ € U) is a
basis on 7,S. To show that it is self-adjoint, we need to check that

(AN, (v),w) = (v,dN,(w)) forall v, weT,S. (33)
By linearity, it suffices to check that
(dNp (%), X0) = (Xu, dNp(x0)) , (34)
which is the same as
(Nu (4, 0) , %y (u,0)) = (Ny (u,0) , Xy (u,0))  at g €U, (35)

where N (u,v) means N (x (u,v)), where (u,v) € U.
Note that for a parametrization x (u,v) we have

(N (u,v),%x, (u,v)) = (N (u,v), %X, (u,v))y =0 forall (u,v)e€U.
By differentiation with respect to v and v respectively, the above will imply
(Ny (u,v) ,xy (u,0)) = — (N (u,v) ,Xyy (u,v)), where N, (u,v) = dN (x, (u,v))
(Ny (u,v) , %y (u,v)) = = (N (u,0) , Xy (4, ), where N, (u,v) = dN (%, (u,v))
(Nu (u,0) % (0, 0)) = (Ny (u,0) %y (1, 0)) = = (N (1,0) , Xup (4, 0)) ;- Xuw (4, 0) = Xou (u,0)

for all (u,v) € U. In particular, at the point p € S, we have the identity (34).
The proof is done. 0

Another useful result is the following:

Lemma 2.17 If the differential dN, : T,,S — T,S of the Gauss map satisfies
(AN, (v), v) =0, Vwvel,s, (36)

then dN, (v) =0 for all v € T,S.

Proof. By the assumption, we have

(dN,(v+w), v+w) =0, Vo, weT,s,
which gives
(AN, (v), w) + (dN, (w), v) =2(dN, (v), w) =0, Vv, weT,S.

Hence for fixed v € T,,S we have (dN, (v), w) = 0 for all w € T,S. This implies dN, (v) = 0. But
since v € T,,S can be arbitrary, we conclude dN,, (v) = 0 for all v € T,,S. O

The most important property of a self-adjoint linear map from an inner product vector space
V' with dim V' = 2 is the following;:
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Theorem 2.18 Let V' be an inner product vector space with dimV =2 and assume A :V —
V is a self-adjoint linear map. Then there exists an orthonormal basis {e1,es} of V' such that

A61 = )\161, A62 = )\262 (37)

for some Ay, Ay € R (without loss of generality we may assume Ay > X\y), i.e. e1, eq are eigenvectors
and \1, Ay are eigenvalues of A. Moreover, we have

AL = veg}z\ig\(=1 <AU7 U) ) Ay = vell/l,’u\ﬁzl <AU7 U) : (38)
Proof. See p. 219 of the textbook. We omit it. O

Remark 2.19 (Interesting observation.) Assume A :V — V is a self-adjoint linear map with
dimV = 2. If Ay > X\s are two eigenvalues of A with corresponding unit eigenvectors vy, ve, then
we must have v1 L vy and

A= max (Av,v), A= min (Av,v).
veV, |v|=1 veV, |v|=1

To see this, by the identities
(A1 — A2) (v1,v2) = (Avy, v2) — (v1, Avg) =0, Ay — Xg # 0,
we have vy L vy. Finally, for any v € V with |v| =1 we can express it as

v=owv, + Bvy forsome «, BER, o?+p*=1

and by
(Av,v) = (alv1 + Bavs, avy + Buy) = Ao + A2,
where
Ao = X + X2 < Mo 4+ X8 < N + M B2 = Ay,
we obtain
A1 = max (Av,v), A= min (Av,v). (39)
veV, |v|=1 veV, |v|=1

2.1.3 Second Fundamental Form, Normal Curvature, and Geodesic Curvature.

Definition 2.20 The quadratic form II,(v) := — (dN, (v),v) : T,S — R is called the second
fundamental form of S at p. Note that we have
II,(—v)=1I,(v) foral veT,S (40)

and the linear map dN, : T,,S — T,S is self-adjoint.

Definition 2.21 Let C be a regular curve in S (with unit normal N ) parametrized by « (s) (with
Frenet frame {t (s), n(s), b(s)}), where s € I is arc length parameter. The unit vector

N (s)=N()AA (s)=N(s)At(s), sl (N(s) means N (a(s))) (41)

is called the intrinsic normal of o at 5. It is an unit vector lying on T,,,)S and normal to the
curve « at s, i.€.

Dine (5) € To(s)S,  (Ming (8),1(s)) = (N (5),0' (5)) =0, sel. (42)
That is why we call it the intrinsic normal of a. Now the three vectors
{t(s), mine (s), N(s)} (43)

form an orthonormal frame at o (s) (it also has the the previous Frenet frame {t(s), n(s), b(s)} at
a(s)). The tangent plane Ty(5)S is spanned by the orthonormal basis {t (s), Ny (s)} and

t(s) A (s) = N (s). (44)
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Remark 2.22 (Important.) Note that n;,; (s) = N (s) At (s) is always defined even if n(s) of «
is undefined (i.e., when o (s) =0).

Remark 2.23 (Important.) The projection of the normal vector n (s) € R® of a onto the tan-
gent plane TS is given by:

projection of n (s) onto TS

= (n(5),1(s)) t(5) + (1 (s) , it (5)) Mine (5) = (1 () ; Wit (5)) M () - (45)
—_——

J/
—~ N

This explains why we call ny (s) the intrinsic normal of a because it is the projection of n (s) onto
Ta(S)S.

Remark 2.24 (Important.) To study the geometry of a curve a (s) on S, it is better to use the
frame {t (s), ny, (s), N (s)} (it respects the surface) than the Frenet frame {t(s), n(s), b(s)}.

For a parametrized curve «a (s) € S (with normal N), s € I, since we have (" (s), o (s)) =

0 everywhere, the vector o/’ (s) must lie on the plane spanned by n;,; (s) and N (s). Therefore, we
have

o (s) =k(s)n(s) = (a"(s), Mint (5)) Mine (5) + (" (), N(s)) N(s), s€lL (46)

N J/ N J/
~~ ~~

Definition 2.25 In (46), the quantity
(" (8), Nyt (s)) (denoted as ky(s) )
1s called the geodesic curvature of «; and the quantity
(" (s), N (s)) (denoted as ky, (s))
18 called the normal curvature of o. Therefore, we have the identity
a"(s)=k(s)n(s) =ky(s)ipe (s) + ko (s)N(s), sel

Since we also have |a” (s)| = k(s) > 0 (the curvature of a (s) as a curve in R?), we conclude the

important identity
K (s) = o (s)| = k2 (s) + k2 (s), se, (47)
which s the same as

k(s)=/k2(s) +k2(s), se€l

n

If o (s) # 0 (then n(s) is defined), we also have

kg (s) = (" (), 0t (5)) =k (8) (n (), Mint (8)), where e (s) = N (s) A ()

N J/

(48)
Finally, if o' (s) = 0 (then n (s) is undefined), we have k, (s) =k, (s) =k (s) = 0.

Remark 2.26 If we change the orientation of S, then both n;, (s) and N (s) change sign and so
do ky (s) and kg, (s) .
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Assume « (0) = p € S. We have the following important identity:

11, (0" (0)) = = (dN, (o (0)) ;0" (0)) = = (N"(0) ;o' (0)) = (N (0) , " (0))
=(N(0),k(0)n(0)) =k, (0) (or denote it as k, (p) ) = normal curvature at p. (49)

We conclude that the value of the second fundamental form /7, (v) at a unit vector v € 1,,S is
equal to the normal curvature of a regular curve a passing through p and tangent to v, i.e.

I (a' (s)) = — (AN, (¢! (s)),a' (s)) = kn (s), Vsel (50)

Thus the normal curvature of o at p is actually to measure the "geometry" of S, NOT
the curvature of «. It is the component of the tangent vector —dN, (o’ (s)) in the direction
a(s), sel.

By the identity (49), we have the following important observation:

Lemma 2.27 The normal curvature k, (s) measures the "geometry" of S in R? (along some
direction v € T,S given by o/ (0)) and the geodesic curvature k, (s) measures how o is curving
in S. The geodesic curvature of « is the intrinsic curvature of a in S, i.e., the curvature viewed
by the surface S. However, the curvature k (s) of a € S in R? depends on the "geometry" of S
in R? and how « is curving in S, i.e. k(s) depends on k, (s) and k, (s).

Another interesting observation is the following:

Proposition 2.28 (This is Proposition 2 in p. 144.) (Meusnier.) All curves (parametrized
by arc length parameter) lying on S passing through p € S and having the same tangent line at
p have the same normal curvature at p.

Remark 2.29 (Important.) By the above Proposition, we can talk about the normal curvature
along a given direction v € T,,S at p (here both v and —v are regarded as having the same
direction). Moreover, if we change the direction v into —v, we get the same normal curvature.

Proof. Let «a(s) and [ (s) be two regular curves lying on S with «(0) = (0) = p € S and
o' (0) = v € T,S. By the assumption we have ' (0) = £v and by (49), the normal curvature of «
at p is

k) (0) = 11, (o (0)) = 11, (v).

On the other hand, the normal curvature of 8 at p is
P (0) = 11, (5 (0) = I1, (£v) = 11, (v).
The proof is done. 0

Example 2.30 (Curve lying on S?.) Let S? C R? be the unit sphere in R® centered at the origin
O = (0,0,0) with chosen orientation N (p) = —p (inward) for all p € S?. Let a(s) : [ — S? be a
reqular curve lying on S?. We have N (s) = —a (s) and the following three useful identities

(a(s), a(s)=1, (a(s), a'(s))=0, {(a'(s), a(s))=1, Vsel,
which give
(" (s), a(s))y=—(d(s), o' (s))y=—1, (a"(s), o'(s))=0, Vsel,

By definition
N (8) = N(s)Ad (s) = —a(s) N (s) (51)



and the frame {t (s), N (s), N (s)} is given by

{t(s), mine(s), N(s)} ={a'(s), —a(s) Ao (s), —a(s)}.

The geodesic curvature and normal curvature are given by

{ kg (s) = (" (5) it (5)) = — (0" (s), a(s) Ao’ (s)) = —det (a(s), 0/ (s), " (s)) (52)
kn (5) = (" (s), N (s)) = (" (s), —ax(s)) = {d/(s), &/ (s)) =1, sel
and the vector o (s) can be decomposed as
07 () = o (5) 7 (5) = By (5) it (5) + Ko (5) NV (5)
= —det (a(s),a (s),a" (s))n (s)+1-N(s), sel, (53)

which gives the curvature identity

k() = /14 k2 (s) = \/1+ [det (a(s), 0’ (s), 0" ()%, s€L. (54)

One can also compute k,, (s) by the identity (49) and get

kn (s) = — <dNa(s) (o (s)),d (s)>
—(N'(s),d' (s))y =(d(s),d/ (s)) =1, Vsel.

Finally, we note that if we change the orientation of S* by choosing N (p) = p (outward) for all
p € S%, both 0y, (s) and N (s) change sign and so do k, (s) and k, (s). In such a case, we have the
nice identity

ko (s) =det (a(s),a (s),a"(s)), sel. (55)

This example confirms our observation in Lemma 2.27. The normal curvature k, (s) = 1 describes
the geometry of S%, not the geometry of a (s) .

Example 2.31 (Curve lying on R%.) If a (s) is a curve lying on the plane R? C R3, then k, (s) =
0 (since the plane has no "curvature") and ky (s) = k(s), where k(s) is the signed curvature
of a in the plane. More precisely, we choose N (p) = (0,0,1) (upward) for all p € R? and so
dN, (v) = 0 for all p € R? and all v € T,,S. If we write the unit tangent vector o (s) as o (s) =
(cosf (s),sinf (s),0), we get

N (s) = N(s)Ad' (s) =(0,0,1) A (cos @ (s),sinf (s),0) = (—sinf (s),cosf (s),0)
and then N, (s) is the same as the normal vector n (s) for plane curve a(s). Hence
kg (s) = (" () ,mine (s)) = (" (s),n(s)) = k (s) = signed curvature of o (s). (56)

There is other way to express the geodesic curvature k, (s). Assume the Frenet frame
{t(s), n(s), b(s)} of a(s) exists. We have

kg (8) = (" (8) ,mint () =k (s) (n (s), N (s) At (s))
=k (N (s), t(s) An(s)) =k(s)(b(s), N (s)) (57)
and conclude

ky(s) = {(a"(s),N(s)) = k (s)(n(s),N (s )) = normal curvature,

kg (s) = (@ (s) ,mint (5)) = K (s) (b(s) , N (s)) = geodesic curvature.




Definition 2.32 Let S C R? be a reqular surface with a chosen orientation N. Given a unit vector
v € T,S, the set
s\ P

15 called the normal section of S at p in the direction v. Here P is the plane passing through p
and contains the two vectors N (p) and v € T,S.

Since S is a regular surface and near p it is like the graph of a function z = f (z,y), (z,y) €
U (some open set containing (0,0)) with f(0,0) =0, f,(0,0) =0, f,(0,0) = 0; see Exercise 26 in
p. 93), therefore near p the normal section of S at p (along any direction v € 7,5) is a regular
plane curve C lying on S (here "regular curve" is in the sense of p. 77-78 of the textbook). If we
parametrize it by a (s), s € (—¢,¢), with « (0) = p, then «/(s) is a curve on S (and also on the
plane P) with o/ (0) = v € T),S and either (in the following, the curvature & (s) of a(s) is defined
as k (s) = [ (s)| = 0)

Q" (0)£0, o (0)=Fk(0)n(0) with & (0) = | (0)] > 0 (59)

or

a”(0) =0, with k(0)=1]a"(0)] =0 and n(0) is undefined.
where in (59) the curvature k (0) is defined as | (0)|. In the first case, n (0) is defined with
n(0)=N(0) or n(0)=-N(0).

In the second case, n (0) is undefined.
By the relation k, (0) = (" (0), N (0)) we have the following possibilities:

k, (0) =k(0) >0 if n(0)= N (0),
k,(0)=—k(0) <0 if n(0)=-N(0), (60)
k,(0)=0 if &”(0)=0 (n(0) is undefined)
In any case, we conclude (note that here, similar to space curves, k (0) is defined as |a” (0)| > 0)
[k (0)] = £ (0)- (61)
In particular, we see that the normal section of S at p has no geodesic curvature.

Remark 2.33 The purpose of the normal section is to find a curve a(s), «(0) = p, on S such
that its curvature k (0) is equal to the absolute value of the normal curvature k, (0).

Example 2.34 Let S = S? centered at (0,0,0) with inward normal N and p € S?. Each of a
normal section of S at p in the direction v € T,S is a great circle with 0 geodesic curvature. We

have k, (0) =1 for all v € T,S.

Example 2.35 (Skip this in class.) Do Example 6 in p. 145. Here we use the fact from Lemma
2.17 to conclude that dN, =0, p = (0,0,0). To be more precise, for each possible normal section
a(s) of S at p in the direction v we have curvature k (0) = 0 (due to the equation z = y*) and
so ky, (0) = 0, which gives

= (dN, (' (0)) &/ (0)) = k, (0) = 0

for all possible o (0) € T,S.
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Example 2.36 (Curve lying on cylinder.) Let S be the cylinder in R? given by
{(z,y,2) eR®: 2” + " =1} (62)

and we choose N (z,y,z) = (—z,—y,0). For p € S, we can look at all possible normal sections
of S at p in all possible directions +v € T,S and conclude that, at p € S, the mazimal normal
curvature s +1 and the minimal normal curvature is 0.

Definition 2.37 For p € S, since the map —dN, : T,S — T,S is self-adjoint, by Theorem 2.18
there exists orthonormal basis {e1,es} such that

—dN, (e1) = ke,  —dN, (e2) = kaea, (63)
for some k1, ko € R (without loss of generality we may assume ky > ks ), where ky, ko satisfy

k1 = maxyer, s, pj=1 (—dN, (v) ,v) = maximal normal curvature at p,
ko = minyer, s, jvj=1 (—dN, (v) ,v) = minimal normal curvature at p.

We call them the principal curvatures of S at p. The directions given by te,, +ey are called the
principal directions of S at p. Therefore, along any possible direction £v € T,S at p, |v| =1, the
normal curvature (—dN, (£v), £v) satisfies (now we denote ki, ky at p as ki (p) and ka (p))

ko (p) < (=dN, (£v),xv) < ki (p), V unit vector v € T,S,

i.e. (—dN, (£v),=£v) lies on the interval [ky (p) , k1 (p)] . We call it the normal curvature interval
atp € S.

Remark 2.38 (Be careful.) In the above definition, we assume {eq,es} to be orthonormal even if
k1 = ky. So by default, principal directions are perpendicular to each other. However, note that
when ki = ko (denote it as k), we have —dN, = kI and any vector v # 0 € T,S is an etgenvector
and we usually say that the direction given by v # 0 € T,,S is a principal direction. This may be a
little bit confusing sometimes !!!

Remark 2.39 Summary: mazimal and minimal normal curvatures are eigenvalues and principal
directions are eigenvector directions, for the linear map —dN.

Lemma 2.40 For each p € S and each number \ € [ka (p), k1 (p)], there is some direction +vy €
T,S such that
(—dN, (£vo), Lvo) = A

Remark 2.41 We will see in Section 3.3 that if we choose ki (p) > ko(p) for all p € S, then
k1 (p) and k2 (p) are continuous functions on S.

Proof. This is obvious since the function (—dN, (£v),+v) : v (unit vectors) € 1,5 — R is
continuous. Therefore, its image is a connected closed interval equal to [kz (p), k1 (p)]. The result
follows due to the intermediate value theorem. O

Example 2.42 Let S = xy-plane in R3. Then at any p € S, all directions are principal directions
and all normal curvatures at p are 0.

Example 2.43 Let S = S? inR® with N (p) = —p (inward) on S?. Then at any p € S all directions
are principal directions and all normal curvatures at p are 1.
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Example 2.44 Let S be the cylinder (62) in R with inward normal. At any p € S, the directions
parallel to the z-axis and the directions perpendicular to the z-axis are principal directions. The
principal curvatures of S at p are 0 and 1.

Example 2.45 Let S be the hyperbolic paraboloid in Example 4 in p. 141. It has global parametriza-
tion x (u,v) = (u,v,v* —u?), (u,v) € R% and we choose N (u,v) = N (x (u,v)) = ot (u,v) . At

p = (0,0,0) =x(0,0) we have x,, (0,0) = (1,0,0) and x, (0,0) = (0,1,0), hence T,S = xy-plane.
We note that (see the computation in Example 2.12)

—dN, ((1,0,0)) = (-2,0,0) = —2(1,0,0), —dN,((0,1,0)) =(0,2,0) =2(0,1,0).

Therefore, —dN,, has two eigenvalues —2 and 2 and corresponding eigenvectors (1,0,0) and (0,1,0) . The
principal curvatures of S at p are —2 and 2 . The two directions along the x-axis and y-axis are
principal directions.

2.1.4 Line of Curvature.

From now on, we always assume that S C R3 is a regular surface with a chosen orientation N.

Definition 2.46 Let C' C S be a connected reqular curve with the property that the tangent line
L at any p € C is a principal direction of S at p. Then we say C is a line of curvature on S.

Remark 2.47 Note that C is in general a curve on S, not a straight line on S (i.e. do not be
misled by the name). On S?, any curve o (s) € S? is a line of curvature. Similarly, on R?, any curve
a(s) € R? is a line of curvature.

Proposition 2.48 (This is Proposition 3 in p. 147.) (Olinde Rodrigues.) A necessary and
sufficiently for a connected reqular C on S to be a line of curvature is that

N (t)=X(t)d (t) (same as — N'(t) = —=X(t)d/ (1)) (64)

for any parametrization o (t) of C' and any t in the domain of a, where N (t) = N («(t)) and X (t) is
a differentiable function of t. In this case, —\ (t) is the principal curvature of S at a(t) along
o (t).

Remark 2.49 (Important.) If a curve a(s) € S, s € I, is a line of curvature, then each
o' (s) is an eigenvector of dNys) and by

— (dN, (&' (s)),a' (s))y = —(N'(s),d' (s)) = (N (s),a" (s)) = ky (s) = normal curvature at o (s),
(65)
we see that
ko(s)=Fki(s) or ks(s), Vsel. (66)

Proof. For any parametrization « (t) of C, if it is a line of curvature, then o/ (t) is a principal
direction and we have

N'(t) =dN (! (t)) = A (t) & ()
for some function A (¢). The function A (¢) is differentiable due to the identity
(N'(t),a" (1))
(o’ (1), 0’ (1))

Conversely, if we have the identity (64) for all ¢, it means that the vector o/ () # 0 is an eigenvector
with eigenvalue —A () for the map —dN,q). Hence the curve C' is a line of curvature. U

A(t) =

(/' (t),a’ (t)) > 0 for all ¢ € domain of «.
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2.1.5 Euler Formula, Gauss Curvature, Mean Curvature, and Umbilical Point.

Let S C R? be a regular surface with an orientation N. Let {e;,es} be an orthonormal basis on
T,S (eigenvectors) corresponding to the two principal curvatures ki (p) > ko (p) . We also assume
that they have positive orientation, i.e. they satisfy e; A ey = N (p) on T,,S. If ky (p) > k2 (p) , such
a basis on 7,5 is unique (modulo the choice {—e;, —es}). For any unit vector v € 7,5, one can
express it as

v=(cosf)e; + (sinf) ey, |v] =1,

where 6 is the angle from e; to v in the orientation of 7,5 (which means e; Av = N (p)). The normal
curvature along v is now given by

kn (p) = 11, (v) = — (dN,, (v) ,v)
= —(dN, ((cosf) e1 + (sinB) ez), (cosf)e; + (sinh)eq)
= ((kycos ) e; + (kysinf) eq, (cos®) ey + (sin ) es) = ky (p) cos® 6 + ks (p) sin” . (67)

The formula in (67) is known as the Euler formula, which is the expression of the second funda-
mental form /7, (-) on 7,,S with respect to the basis {e;, ez} .

Remark 2.50 In Euler formula, it suffices to focus on 6 € [0,7) due to 11, (—v) = II, (v).
Remark 2.51 (Interesting observation.) The formula (67) automatically implies the inequality
ko (p) <kn(p) <ki(p), VYveTlls, |u=1

due to the linear combination
kn(p) = pk1+ (1 — p)ky, 0<p=cos’f<1. (68)
Definition 2.52 Let ki > ko be the two principal curvatures of S at p. The two numbers

kit ke
2

K = k’lk?Q, H: (69)

are called the Gauss curvature of S at p and the mean curvature of S at p respectively. We
note that

K = det (—dN,), H=— %TT (—dN,) (: %Tmce (—de)) | (70)

Remark 2.53 If we change the orientation of S (i.e. replace N by —N ), each principal curvature
changes sign and so the mean curvature H changes its sign. However, the Gauss curvature K 1is
unchanged (since dimT,S = 2).

Definition 2.54 A point p € S is called
1. Elliptic if det (dN,) > 0 (i.e. k1 (p) and ky (p) have the same sign).
2. Hyperbolic if det (dN,) < 0 (i.e. k1 (p) and ky (p) have opposite sign).
3. Parabolic if det (dN,) = 0, but AN, # 0. (i.e. either ky (p) or k2 (p) is zero, but not both).
4. Planar if AN, =0 (i.e. both ki (p) and ko (p) are zero).
Remark 2.55 Note that the above definition does not depend on the choice of the orientation N on

S.
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Example 2.56 (See Example 5 in p. 142.) For the graphic surface S : z = 2>+ ky* (k > 0 is a
constant) with upward normal, the point p = (0,0,0) € S is an elliptic point with k; = 2, ke =
2k and all normal curvatures have the same sign. All curves a (s) € S, «(0) = p, passing through
p are bending towards the same side of T,,S due to the constant sign of (" (0), N (p)).

Example 2.57 For the graphic surface S : z = y?> — 2% with upward normal, the point p =
(0,0,0) € S is a hyperbolic point with ky = 2, ko = —2. There are curves passing through
p bending towards one side of T,,S and there are curves passing through p bending towards the other
side of T,S.

Example 2.58 Let S be the cylinder in Example 3 in p. 141 with tnward normal. At each
p € S, we have kv = 1, kg = 0. Therefore, all points on S are parabolic points.

Definition 2.59 Let ki > ko be the two principal curvatures of S at p. If we have ki = ks, then
the point p € S is called an umbilical point. In particular, any planar point is an umbilical point.

Example 2.60 On S?, any point p € S? is an umbilical point. Similarly, on R?, any point p € R? is
an umbilical point.

We have the following interesting result related to the above example:

Proposition 2.61 (This is Proposition 4 in p. 149.) Let S C R3 be a connected surface and
all points on S are wumbilical. Then S is contained either in a sphere (not necessarily unit sphere)
or in a plane.

Proof. Let p € S and x(u,v) : U C R*> — S a parametrization near p and we take U to be
connected open set in R?. For each ¢ € V = x (U) and any vector w = ax,, + bx, € T,S, we have

AN, (w) =A(@Qw, YweT,S, qeV, (71)

where A (q) : V' — R is a differentiable function on V' (you can see this from (72) below). Since
w = ax, + bx,, we have
alN, + bN, = X (q) (ax, + bx,) .

Since w € T, S is arbitrary, we have (pick e =1, b =0 and a = 0, b = 1 respectively)

(Nu, Xy) . (Nu, Xy)

Nu=Aa)xu, No=A@)x, M) =5 (o)~ Gluv) (72)
which gives (look at N,, — N,, = 0)
M () %Xu = Au (@)%, =0, VgeV
and so
Ao (@) =Xu(q) =0, VgeV. (73)

The above implies that A (¢) is a constant function on V' since V' C S is connected.
Case 1: A\(q)=0on V.

In this case, we have N, = N, = 0 on V, which implies N (u,v) = const. Ny on V. In particular
we get

0 0
%(x(u,v), NO):%(X(u,U), No)=0 on (u,v)eU.

It means that all points x (u,v), (u,v) € U, lie on a plane P perpendicular to Np.
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Case 2: A\(¢)=A#0onV.

In this case, we have

which gives

i.e.

= const. vector vy on U.

We conclude

1
X (u,v) —vo|° == on U

2
and know that all points of V' are contained in a sphere with radius 1/ || centered at vy.

Finally, for any p, ¢ € S, since S is connected, there exists a continuous path «(t) € S, t €
[0, 1], such that « (0) = p, a (1) = ¢. By compactness of the set « ([0, 1]), there exists finitely many
connected coordinate neighborhoods Vi, ..., Vj satisfying

k

a(0,1) ¢ UV

=1

and without loss of generality we may assume that

Vi ﬂVg (open set) # &, VgﬂVg (open set) # @, ..., Vi1 ﬂVk (open set) # @.

and moreover, each coordinate neighborhoods V; is lying either on a plane or on a sphere with radius
r; > 0.

If V7 lies on a plane, then V5 also lies on the same plane. This is because if V5 lies on a
sphere or a different plane, then it is impossible for V; [ V2 to be an open set on the surface S. By
induction, all V;, ¢ = 3, 4, ..., k, will all lie on the same plane. Hence p and ¢ lie on the same
plane. By fixing p € S and letting ¢ € S be arbitrary, we see that the whole surface S lies on some
plane.

Similarly, if V; lies on a sphere with radius r > 0, the same argument implies that all V;, 1 <
1 < k, lies on the same sphere with radius » > 0. Hence p, ¢ lie on the same sphere with radius
r > 0. By fixing p € S and letting ¢ € S be arbitrary, we see that the whole surface S lies on a
sphere with radius » > 0. The proof is done. U

2.1.6 Asymptotic Direction, Asymptotic Curve, Dupin Indicatrix, and Conjugate Di-
rections.

Definition 2.62 Let p € S. A direction v € T),S is called an asymptotic direction at p if the
normal curvature of S at p along v is 0. A connected reqular curve C C S is called an asymptotic
curve if for each p € C the tangent line L at p € C is along an asymptotic direction.

Remark 2.63 (Comparison.) If a(s) € S, s € I, is a regular curve on S, we have:

1. If normal curvature k, (s) at o (s) along o (s) is either —ky (s) or —ks (s) for all s € I, then ac(s)
1s a line of curvature.

2. If normal curvature k,, (s) at a (s) along o/ (s) is 0 everywhere, then a (s) is an asymptotic
curve.

Lemma 2.64 We have the following:
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1. If p € S is an elliptic point (ki (p) ko

k

2. If p € S is a hyperbolic point (ki (p)

tions at p. Moreover, if ki (p) + ko (p)
orthogonal.

(p) < 0), we have exactly two asymptotic direc-

(p) > 0), there is no asymptotic direction at p.
ks (p)
=0 (i.e. mean curvature is 0), these two directions are

3. If p € S is a parabolic point (ki (p) ks (p) = 0, but one of them is nonzero), there is exactly
one asymptotic direction at p.

Proof. (1) is obvious.

For (2), let {e1,e2} an orthonormal basis on 7,5 (eigenvectors of —dN,) corresponding to
the two principal curvatures k; (p) > ko (p). For unit vector v € T,S with v = (cosf)e; +
(sin ) ey, the normal curvature k, (p) along v is given by

En (p) = k1 (p) cos? 0 + ko (p)sin® 0 = [k1 (p) — ko (p)] cos® O + ky (p), 0 € [0,7), (74)

where now k; (p) > 0 and ks (p) < 0. We want to find 6 € [0, 7) such that &, (p) = 0, i.e. want to
solve the equation for 6 € [0, 7) :

k2 (p)

Re -k -

cos’f = —

which gives

p) — ka(p)

The equation has exactly two solutions 0y € (0,7/2) and © — 6y € (7/2,7). Therefore, we have
exactly two asymptotic directions at p (draw a picture for this).

If k1 (p) + k2 (p) = 0, then equation (75) becomes cosf = +1/4/2 and the two solutions are
0o = m/4, 3w /4. These two directions are orthogonal.

o ko (p)
cosf = :I:\/—kl(— (75)

For (3), if k1 (p) > 0, k2 (p) = 0, then equation k, (p) = 0 becomes
ki (p)cos’@ =0, 6¢€l0,).

The only solution is # = /2 and there is exactly one asymptotic direction at p. On the other hand,
if If k1 (p) = 0, ka (p) < 0, then equation k, (p) = 0 becomes

ko (p)sin®0 =0, 6 ¢€[0,7).
The only solution is § = 0 and there is exactly one asymptotic direction at p. U
Definition 2.65 Let p € S. The Dupin indicatriz at p is the set of vectors on T,,S given by
{weT,S: 11, (w) =—(dN, (w) ,w) = +1}. (76)

Let {e1,e2} an orthonormal basis on 7,5 (eigenvectors of —dN,) corresponding to the two
principal curvatures ki (p) > ko (p) . For w € T,,S, we can express it as

w = xe; + yes = (rcosf) ey + (rsinf) ey, r=|w|

and obtain
I, (w) = — (AN, (ve1 + yes), xer + yes) = kix? + koy?
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or

I, (w) = — (dN, ((rcos®) e; + (rsinf)es), (rcos)e; + (rsinh)eq)

=1? (ki cos® 0 + kysin®0) = r*I1, (v), where v = v
r
Therefore, the Dupin indicatrix is described by
k1a? + kyy? = +1, (77)

which is a symmetric quadratic curve on the plane 7},S.
Similar to Lemma 2.64, we have:

Lemma 2.66 We have the following:

1. If p € S is an elliptic point (ki (p)ka(p) > 0), the Dupin indicatriz is an ellipse on
T,S. Moreover, if ki (p) = ka2 (p), it is a circle.

2. If p € S is a hyperbolic point (ki (p) k2 (p) < 0), the Dupin indicatriz is a hyperbola and
its two asymptotes are pointing to the two asymptotic directions at p.

3. If p € S is a parabolic point (ki (p) k2 (p) = 0, but one of them is nonzero), the Dupin
indicatriz is a pair of parallel lines pointing to the asymptotic direction at p.

Proof. (1) is obvious.

For (2), it suffices to verify the last statement. The hyperbola satisfies the equation
ki (p)2® + ko (p)y? = %1, ki(p) >0, ko(p) <O.

We can decompose it as

(\/kl (p)r — / =k (p)y) (\/kl (P)x + k2 (p)y> ==+l

and its two asymptotes are the two lines L, Ly given by

Li:VEki(p)r——ka(p)y=0,  Ly: k1 (p)x+/—ks(p)y = 0.

The line L; intersects the unit circle on 7,5 at (cos 6, sinfy) on the first quadrant (+, +) at

1Y) g — k1 (p)
00590‘\/ ) -k T \/ k() — b (7) (7%)

and the line Ly intersects the unit circle on 7,5 at (cosp, sin ) on the second quadrant (—,+) at

N T R IO
ost = \/ o) -k \/ )~ ke () (%)

The above two directions are asymptotic directions due to (75).

For (3), we may assume k; (p) > 0, k2 (p) = 0. Now the Dupin indicatrix becomes
ki (p) 2® = #1,

which is a pair of two parallel lines © = +1/1/k; (p) pointing in the y-axis direction (the direction
with @ = /2, which is the only asymptotic direction at p). O
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Definition 2.67 Let p € S and wy, we € T,S are two monzero vectors (may or may not be unit
vectors). If we have

(AN (w1), wa) = (wy, dN, (wa)) =0, (80)

we say these two vectors are congugate. The two directions 11, o given by wy (or —wy) and wy (or
—wsq) are called conjugate directions.

Remark 2.68 (Be careful.) Be careful that the definition (80) implies AN, (wy) L wy and dN, (we) L
wy. However, in general, it does not imply that dN, (w1) = \w, and dN, (we) = Awsy for some
constants A1, Ao (unless wy L ws). The vector dN, (wy) may have component in wq direction and
the vector dN, (ws) may have component in wy direction.

Example 2.69 Assume at p € S we have ky # ko and both are mot 0. Then two principal
directions are conjugate.

Example 2.70 Ifk; # ko but one them is 0, say k1 > 0 (with unit eigenvector ey ), ko = 0 (with unit
eigenvector ez, €1 L ey), then for any nonzero vector w € 1,5, the two vectors w, es € T),S are
conjugate due to

(dNp (w) , €2) = (w, dNp(ez)) = (w, 0) = 0. (81)
Example 2.71 An asymptotic direction (normal curvature zero direction) is conjugate to itself.

Example 2.72 If ky = ky # 0 (denote the common value as A\, A # 0), any pair of orthogonal
directions are conjugate. This is because —dN, = A\ and

<de (wl), ’U)2> = <—)\w1, ’U)2> ==X <'LU1, 'LU2> =0
if and only if (w1, wy) = 0. If ky = ke = 0, any pair of directions are conjugate.

Lemma 2.73 (Conjugate directions in terms of polar coordinates.) Let p € S and {ey, e}
is the orthonormal basis at T,S satisfying

€1 A\ €y = N (p) s —de (61) = k‘lel, —de (62) = k)g@g, (82)

where ki # ko are principal curvatures. Let r1, o be two directions and 6, ¢ are the angles from
e1 to 11, ro respectively in the orientation of 1,,S. Then r1, T2 are conjugate if and only if

k1 cos @ cos ¢ + kysinfsinp = 0. (83)
Remark 2.74 If we replace 6 by 0 + 7 (or ¢ by ¢ + ), the identity (83) still holds.
Proof. By the assumption, r, ry are conjugate if and only if the two vectors
wy = (cosf)e; + (sinf) es, wy = (cosy)er + (sinp) ey (84)
are conjugate. We compute

(dNp (w1), wo)
= (dN, ((cos @) es + (sinf) ez), (cosyp)er + (singp) ez)
= —ky cosf cosp — kg sinf sin ¢

and so (dN, (w;), we) = 0 if and only if (83) holds. O
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Lemma 2.75 (Conjugate directions in terms of Fuclidean coordinates.) Same assumption
as i Lemma 2.78 with ki # ko. Assume the direction r1 is given by some monzero vector w, =
zei+yes € TS and the direction o is given by another nonzero vector wy = Tej+yeg € 1,S. Then
r1, o are conjugate if and only if

kixZ + koyy = 0. (85)

In particular, for any nonzero vector wy = xe; + yes € 1,5, if
Wo = (—k‘zy) e1 + (k’ll‘) €2 € TpS (86)
1$ a nonzero vector, then wy and wo are conjugate.

Remark 2.76 The above lemma is still correct if kv = ko # 0. In case ky > 0, ky = 0, (85)
becomes kixx = 0. In such a case, any nonzero (0,y) and any nonzero (&,y) are conjugate. See
Ezxample 2.69.

Proof. We can write wy = /2% 4 42 (cos 6,sin0) and ws = /T2 + 5% (cos ¢, sin ) . By (83), they
are conjugate if and only if
k1 cos 6 cos ¢ + ko sinfsin p = 0,

which is the same as
k1 <\/ 22 +y? C059> (v i+ COS@) + ko <\/SU2 + yQSiHG) <\/92’2 + @%ingp) =0,

i.e. if and only if (85) holds. In particular, the two nonzero vectors (z,y), (—koy, k1) are conjugate.[]

Example 2.77 (Using Dupin indicatriz to find conjugate directions.) Using the property
that any two nonzero vectors wy = (x,y), wy = (—koy, k1x) are conjugate to each other, one can
explain the picture in the textbook, p. 152 for the elliptic case. The construction is also valid for the
hyperbolic case. Draw two pictures on blackboard (one for elliptic case and one for hyperbolic
case).

2.1.7 Conclusion for Conjugate Directions.

Let p € S and {ey, e2} is the orthonormal basis at 7,5 satisfying
€1 A\ €y = N (p) s —de (61) = k‘lel, —de (62) = /{3262, (87)

where k;, ko are principal curvatures. Let 71 be a direction on 7,5 given by w; = (cos#)e; +
(sinf) e5. By Lemma 2.73, we can conclude the following:

(1). Assume ki # ko and kiky > 0 (i.e. p € S is an elliptic point) (without loss of generality,
we may assume k; > 0 and ks > 0). In such a case the vector (k; cos, ko sinf) # (0,0) is nonzero
and there is an unique conjugate direction ry given by (note that —w, also gives rise to the
same direction)

w3 = (cos ) &1 + (sin ) ex,

where the direction (cos ¢, sin ¢) is perpendicular to the direction (k; cos 8, kqysin@), i.e.

ki cosf cos ¢ + kasinfsin = 0 (same as ( i cos ) : ( o8 ) =0). (88)

ko sin 6 sin ¢

Moreover, the direction r, is different from r; (due to k; cos? 6 + kysin® 6 > 0). In particular, if
71 is the principal direction e; (same as 6 = 0), then the identity (88) is the same as cos ¢ = 0 (i.e.
¢ = 7) and we have 7, is the principal direction e,. Similarly, if r, is the principal direction

s, then ry is the principal direction e;.
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(2).If ky # ko and k1ks < 0 (i.e. p € S is a hyperbolic point), then we have the same conclusion
as in (1), but the direction 7, may be the same as r; if we have

ki cos? 0 + kosin?0 =0 (note that k; > 0, ky < 0),

which means that r; is an asymptotic direction. Therefore, as long as r; is not an asymptotic
direction, the conjugate direction r, is unique and different from r,. But if r; is an asymp-
totic direction, the only direction conjugate to r; is r; itself. Finally, if r; is the principal
direction e; (eg), then 75 is the principal direction ey (e7).

(3). If k1 # kg and k1ks = 0 (i.e. p € S is a parabolic point) (without loss of generality, we
may assume k; > 0, ks = 0), then the identity (88) is the same as cosf cos¢ = 0. Therefore, if

0=73 (same as w; = eq, eigenvector for eigenvalue ky = 0), then any nonzero vector wy € 7,5 is

conjugate to ry. But if 6 # 7 (same as w; # e3), then we have cos ¢ = 0 and the only direction
conjugate to ry is the eigenvector direction e,.

Therefore, for a parabolic point, we have the property: if two nonzero vectors w;, ws €
T,S are conjugate to each other, then one of them must be pointing to the eigenvector
direction e, where ky = 0.

(4). If ky = ky = X # 0, then we have —dN, = A, A # 0, and for any nonzero vectors
wy, we € 1,5, we have

(AN, (1), wa) = (—Awy, we) = =\ (wy, wa) .
Therefore, wy, wy € T,,S are conjugate if and only if (wy, ws) = 0.
(5). If ky = ko = A =0, then —dN, = 0 and any pair of directions are conjugate.
2.1.8 Three Interesting Identities Related to Gauss Curvature and Mean Curvature.
Lemma 2.78 Let p € S and {ey, e} be the orthonormal basis at T,,S satisfying
ex Nea =N (p), —dN,(e1) =kier, —dN,(e2) = kaea, (89)
where ki, ko are principal curvatures. We have:
1. If H (p) = 0 with k1 (p) > 0, k2 (p) < 0, we have the identity
(AN, (w1) , dNp (w2)) = =K (p) (wi,w2) , YV wi, we € T, (5), (90)

where K (p) < 0 is the Gauss curvature at p. In particular, if we assume H = 0 on S with
k1 > 0, ks < 0 everywhere, then the angle of two intersecting curves on S and the angle
of their spherical images are equal up to a sign (in such a case, for any p € S, dN, is a

conformal map because it preserves angles). O

2. We have
AN, (1)) A AN, (w3) = K (p) (wy Aws), ¥ wy, w € T (S). (91)

3. We have
dN, (w1) AN we +wy AdN, (we) = =2H (p) (w1 Aws), Y wy, wy €T, (5). (92)
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Remark 2.79 In the case when we have wy A we = N, then (91) and (92) give the following
K (p) = {dN, (w1) N dN, (ws) , N (p)) (93)

and

—2H (p) = (dN, (w1) A wa +wi AdN, (w2), N (p))- (94)
Proof. We prove (2) and (3) first. For any w;, we € T}, (S), we can express them as
wy = are; + agez, Wy = biey + beey € T, (S)
for some constants ai, as, by, by. We have
wy A wg = (arby — agshy) e; A ey
and

dN, (w1) A dN, (w2)
= (—arkie1 — agkses) A (—bikieq — bokses)
= (a1k1e1 + agkses) A (bikier + bokaes) = (arkiboks — agkabiky) eq A ey
= kiks (a1by — aghy) e; A ey = K (p) (w1 Aws), Y wy, we € T,(5).
We also have
dN, (w1) A wg +wy A dN, (ws)
= (—a1kie1 — agkaez) A (brer + baes) + (are1 + azes) A (—bikier — bakaes)
= [—a1k1by + agkaby + a; (—boks) + asbiki]er A eg
= [a1bg (—k1 — k2) + agby (k1 + k)] e1 A ea = —2H (p) (a1by — azby) €1 A ez
=—2H (p )(wl/\wg), YV wy, we € T,(S5).
For (1), we first have

K (p) = ki1 (p) k2 (p) = =kt (p) = —k3 (p)
and
<de (wl) s de (w2)> = <—CL1]{31€1 — (IQ]CQ@Q, —b1k161 — b2k2€2>
= CL1[)1]€% + azbgkg = — (Clel + agbg) K (p) =-K (p) <w1, U)2> , A w1, Wa € Tp (S) ,
where K (p) < 0. In particular, we have
AN, (w)|* = =K (p) [w]* (same as [dN, (w)| = /=K (p) [w]), ¥ w €T,S. (95)
If we assume H = 0 on S with k&1 > 0, ky < 0 everywhere, then for any two regular curves
a(s), B(s) on S with intersection point at o (0) = 5 (0) = ¢ € S with angle 0, we have
(dNg (o' (0)), dNy (8'(0))) = =K (q) {/ (0), B'(0)),
where we know that

d d
N, (@ )= | N@(@E). dNE )= L] N ().
S s=0 o s=0
The intersection angle 6y of the two spherical image curves N (a(s)), N (8(s)) at N (q) satisfies

(dNy (o’ (0)), dN, (8'(0)))

O8N = 4N, (o (0))] [N, (77 (0)]
K@@ 80 @O 80
VK@ 0] VK@ 7)o O)]50) ’
which implies 0y = 46. The proof is done. O

28



2.1.9 The Geodesic Torsion for a Regular Curve on a Regular Surface S C R? (this is
Exercise 19 in p. 155).

Let a(s), s € I, be a regular curve on S. In the following, we shall compare the Frenet frame
equations for the moving frame {t (s), n(s), b(s)} along o (s) € R? and the differential equations
for the surface moving frame {(s), n;,; (s), N (s)} along a (s) € S. Recall that n;,, (s) is the
intrinsic normal of « at s, defined as

N (s) =N(s)At(s)=N(s)Ad'(s), se€l (N (s) means N (a(s))). (96)
By (46), we have

t'(s) = w =k(s)n(s)= \(o/' (s) ,Vnmt (5)) Nyt (5) —i—\(o// (S);N (s)) N (s)

Ky () Wipe (S) + kn (s) N (s), se, (97)

J

v~

where k, (s) is the geodesic curvature of « and k, (s) is the normal curvature of «.
To continue, we would like to express {t (s), n(s), b(s)}intermsof {¢(s), n (s), N (s)}.The
following lemma is straightforward.

Lemma 2.80 We have the following expression:

n(s) = (n(s), Mine () Mint (5) + (n(s), N(s)) N (s)
~~ —

(98)
b(s) =—={n(s), N(s))Nin (s)+ (n(s),0int (s)) N (s).
— ~~
In terms of formal matriz notation we have
t(s) 1 0 0 t(s)
n(s) | =10 (n(s), nm(s)) (n(s), N(s)) n,(s) |, sel. (99)
b(s) 0 —=(n(s), N(s)) (n(s), mim(s)) N (s)
where the coefficient matrixz is orthogonal.
Proof. The first identity in (98) is clear. For the second identity in (98), we have
b(s)=t(s)An(s)=1t(s)A |(n(s), i () Nine (s) + {n(s), N(s)) N(s)
~~ —
= (n(s) ;Mg (5)) N () = (n(s), N(s)) nint (s).
~~ —
The proof is done. U

Next, we compute N’ (s) (note that NV (s) means N (« (s))) and can express it as
N (s)=A(s)t(s)+Q(s) e (s) +C(s)N(s), sel

for some coefficients A (s), Q (s), C (s) and we see that C (s) = 0 (since (N’ (s), N (s)) = 0 for all
s) and
A(s) = (N'(s),t(s)) = (N'(s), 0 (5)) = = (N (5), 0" (5)) = —ha (s),

which is the normal curvature. Hence we conclude (we will give @ (s) a name later on)

N'(s) = =kn(s)t(s)+Q(s)mns (s), se€ L (100)
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Finally, we compute

n, (s)= d% IN(s) A (s)] = N'(s) A (s) + N (s) Ao (s)

= [k, (5)t(s) + Q (8) Mint (s)] At (5) + N () A [y (8) Mint (5) + ki (5) N (5)]
— k,(s)t(s)—Q(s)N(s), sel.

We define the following;:

Definition 2.81 (See textbook p. 155.) The quantity @ (s) is called the geodesic torsion of
a at a(s) and denote it as 7, (s) . Note that we can also express it as
7y (s) = (N'(s), mint (5)) = = (N (5), mj, (s)), s€l. (101)

int

Remark 2.82 (Important.) The geodesic torsion 7,(s) is a new quantity. It cannot be ex-
pressed in terms of ky (s) and k, (s) . Note that if we do the following:

() = (N (5). mi (59) == (N (5) 1l (9) = = (N (0). - V() At (5)
=—(N(s), N (s)At(s)+ N (s)At'(s)) =—(N(
=V (5), [ ()£ + 75 () B (9] A £(5)) = =V (), 7 (5) e () A (8)) = 7, (5),

we get nothing useful at all.
We can summarize the following:

Lemma 2.83 (Moving frame equations on S.) The surface moving frame {t (s), n;,; (s), N (s)}
along a (s) € S (with normal N (s)) satisfies the equation

t'(s) 0 ke(s) Fals) t(s)
n,,(s) | = —k;(s) 0 —714(s) n.:(s) |, sel. (102)
N (s) —kn(s) 75(s) O N (s)

Remark 2.84 Compare with the Frenet frame equations for o (s) € R3, given by

t' (s) 0 k(s) 0 t(s) t(s)
n(s) | =1 —k(s) 0 —7(s) n(s) |, n(s) | € R (103)
b (s) 0 7(s) 0 b(s) b(s)

The following lemma is about the relation between geodesic torsion and principal curva-
tures of S :

Lemma 2.85 Letp € S and a(s) € S, s € I, is a reqular curve with o (0) = p and let {ey,es} be
the orthonormal basis at T),S satisfying

€1 VAN €9y — N (p) y —de (61) - k:lel, —de (62) == ]{5262. (104)
Denote the angle from ey to t (0) = o' (0) by p. Then we have

7, (0) = (k1 — ka) cos psin . (105)
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Proof. By (102), we have (note that N (0) Ae; = e, N (0) Aex = —ey)
74 (0) = (N"(0) , min (0)) = (N'(0), N (0) A£(0))
— <N/ (0), N(0) A |(cos ) elj; (sin ) e%} > = (N'(0), (cosp)es — (siny)e;)

= (cosp) (N'(0), e2) — (sin) (N'(0), €1).

Now we note that

N'(0) = dN, (¢ (0)) = dN, (\(cos @) e1 + (sin @) e%>

-~

= (cos @) (—kie1) + (sinp) (—kqea)

which gives

7, (0) = (cosp) (N'(0), e2) — (sin) (N'(0), e1)
— (cos @) (sin ) (=ks) — (sing) (cos ) (—kr) = (k1 — k) (cos @) (sin ).

O

Lemma 2.86 (Relation between torsion and geodesic torsion.) Letp € S and a (s) € S, s €
I, is a regular curve with « (0) = p. By (99), we have

n(s) = (n(s), Nint (8)) Mine (s) + (n(s), N(s) N(s), sel

S
—~
»
~—
I
—~
S
—
»
~—
—
VA
~—
~
—~
VA
~—
_|_
—~

n (S) y Dint (5)> Nint (S) , SE I
ﬁ_/ N ~ /,

and let (i.e. the angle between n (s) and N (s) is denoted as 6 (s))

(n(s), N(s))=cosb(s), (n(s), myu(s) =sinb(s), sel, (106)

then we have
9’(5):7'(5)—7'9(5), sel, (107)

where T (s) is the torsion of a (s) as a curve in R3.
Remark 2.87 If we let (n(s), N (s)) =sinf(s), then 0’ (s) =7,(s) —7(s), s € I.
Proof. By (102) and (103), we have

(—sin9())9'(>=d%< (s), N(s)) = (n'(s), N(s)) +(n(s), N'(s))

= (=k(s)t(s) =7 (s)b(s), N(s)) +(n(s), —kn(s)t(s)+ 7y (s) Mine (5))
=7 (s)(b(s), N(s))+75(s)(n(s), nint (5))
{ )

=7 (s )< n(s), N(5)) Nins (s) + (0 (s) , i (5)) N (s) N(S)>+Tg (s) (n(s), Mint (s))

-~

= {1(8), mimt (5)) (7 (5) = 7(5)), where {n(s) D (5)) = sin 0 (s).

N

The proof is done. O

Lemma 2.88 (Lines of curvature have zero geodesic torsion.) Letp € S and o (s) € S, s €
I, is a reqular curve with o (0) = p. Then o (s) is a line of curvature if and only if 7, (s) = 0 along
the whole curve a(s), s € 1.
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Proof. (=) Assume « (s) is a line of curvature. We have

N'(s) = dNye (& (s)) = A(s)d/ (s), Vsel
for some function A (s) and by (102) we also have

N'(s) = —kn (8)t(s) + 7y ($) e (5), s €L (108)
Comparing the above two identities, we have 7, (s) = 0 along the whole curve « (s), s € I.

(<=) Assume 7, (s) = 0 for all s € I. By the identity (108), we must have N’ (s) = —k,, (s) t (s) for
all s € I, which means that « (s) is a line of curvature. O

2.2 The Gauss Map in Local Coordinates (this is Section 3-3 of the
book).

The purpose of this section is to use local coordinates to study the second fundamental form and
the differential of Gauss map. Let S C R3 be a regular surface with an orientation N. All local
parametrizations x (u,v) of S in this section are assumed to be compatible with the orientation N
of S. That is

N (u,v) = N (x(u,v)) Xu N Xy

N |xy A Xy

for all (u,v) in the domain of x.

Let x (u,v) be a parametrization near p € S. Let o (t) = x(u(t),v (f)) be a curve in S with
a(0) = p. In the following all computations are evaluated at the point p and at ¢ = 0 unless
otherwise stated. We have

d
dN (') = dN (x,u’ + x,0') = EN (u,v) = Nyu' + N,o',
where N (u,v) means N (x (u,v)) and we know that dN (x,) = N,, dN (x,) = N,.

Since N,, N, € T,,S, we can write

Nu = dN (Xu) = a11Xy + aQIX’Uv
(109)

N, = dN (x,) = a12X, + a20X,,

for some constants a;;, 1 <7, j < 2. The above means that the matrix representation M for the
linear map dN,, : 7,5 — T,S, with respect to the basis {x,,x,}, is given by

M = ( di i ) . (110)

In particular, we have

dN (/) = dN (x,u' + x,0") = (a11%y + a21%,) U’ + (a12%,, + a29%,) V'

= (anu’ + a120’) x, + (anu’ + agv’) x,,

which, in terms of matrix formulation, is

/ !/
()=o) () o
v G21 QA22 v
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Remark 2.89 Note that the matriz representation M for dN, with respect to the basis {x,,X,} is
not necessarily symmetric even if dN, is self-adjoint. The matriz M is symmetric if {x,,x,} is
orthonormal due to

<dN (Xu) ,Xv> - <allxu + 21Xy, Xv> = Q21,

(dN (x,),Xy) = (a12Xy + a22Xy, Xy,) = a1,
(dN (x4),%y) = (AN (Xy) ,Xy) -

Now we look at an example: let T (x,y) = (22, —3y) : R* — R? be a self-adjoint linear map and
choose the non-orthonormal basis {vy,v2} = {(1,0), (1,1)}. We have

TUl = 2’01, T’U2 = 51)1 — 3U2.

Therefore, the matriz representation for T : R? — R? with respect to {vy,ve} is
2 5
M=
(0%)

Now we compare two different ways to express /1, (o), where o/ = x,u’ + x,v'.

which 1s not symmetric.

First way:

We have

IL, (o) == (dN (&), ) = — <Nuu' + N, xu’ + XUU/>
—_—

=| (') ( ; / ) < w ) = (W) + 2fu'v + g (v')°, (112)

g v’

where the quantities e, f, g are given by
( € f ) — ( _<Nu7 Xu> _<Nu7 X'u> ) — ( <N7 qu> <N7 Xvu> ) (113)
f g _<Nv7 Xu> _<Nv7 Xv) <N7 Xuv> <N, va>
By (112), we conclude the formula:

11, (Ax, + Bx,) = eA> + 2fAB + gB®, V constants A, B. (114)

Definition 2.90 If x (u,v) : U C R? — R3? is a local parametrization at p € S with basis
{Xu, Xy}, then the above three quantities e, f, g are called the coefficients of the second fun-
damental form with respect to the basis {x,,x,} on T},S.

Remark 2.91 Similar to E, F, G, the three quantities e, f, g are differentiable functions on
their domain. For computational purpose, it is easier to use the formula

€= <N7 X'U/LL> Y f = <N7 X’LLU>7 g = <N7 X’UU>
to find e, f, g.

Remark 2.92 The first-derivative vectors x,,, X,, Ny, N, are tangential, but their second deriva-
tives can point to any directions in R3.
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Second way:

We have
II, () = = (dN (), )

! / ! !
—_— <£a11xu + ag1x,) U + (a12X, + a20X,) v, XU+ X0

-~

/ (a11%y, + a21Xy, Xy) (11X + A21Xp, Xy)
= —(u,v
(19X, + a22Xy, Xy)  (A12X,, + A22Xy, Xy)

_ —(U/ U/) a11 Q921 E F U,
’ 12 Q929 F G ’Ul ’

where {E, F, G} are the coefficients of the first fundamental form. Thus, by comparison, the coeffi-
cients e, f, g of the second fundamental form and the coefficients £, F, G of the first fundamental

form are related by
e f ai; Qo1 E F
= _ 115
(f 9) <a12 G22>(F G)’ (115)

N~ —

or equivalently,

-1
aiy Qg1 e f E F
= — : 116
<a12 a22) <f 9>(F G) (116)
We call (116) the equations of Weingarten.
By
-1
EF\' 1(G -F B )
(FG) _Z(—FE >, A =EG-F*>0.

we can express a;;, 1 <1, j <2, in (116) explicitly as

fF —eG gF — fG el — fE fF—gE (117)
a1 ="———, ap="——"—, Ay =—+"—, ap="——"+.
11 A A O A 02 A

Remark 2.93 By (117), we see that a;;, 1 < i, j < 2, are differentiable functions on their
domain.

Remark 2.94 Note that in (116) both matrices on the right hand side are symmetric. But the
product of two symmetric matrices are not symmetric in general.

Remark 2.95 We always have EG — F? > 0, but we do not have eqg — f? > 0 in general.

Since the determinant of —dN,, (same as the determinant of d/V,) is the Gauss curvature K
of S at p, we immediately have

a1 a2 eg — f?
K = kiky = det = 118
. ¢ (CL21 Cl22> EG — F? (118)

Note that, in general, eg — f2 may not be positive. We also have the mean curvature H of S at

p, given by
1 1 leG —2fF + gFE
H = §TT (—de) = 3 (CL11 + a22) = B G — 2 . (119)

Lemma 2.96 One can also use e, f, g to classify the following: Let p € S. We have:
1. p is an elliptic point if eg — f? > 0.
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2. p is a hyperbolic point if eq — f? < 0.
3. p is a parabolic point if eqg — f? = 0, but at least one of e, f, g is not zero.
4. pis a planar point if e = f = g = 0 is zero.

Proof. 1 and 2 are clear. For 3 and 4, if dN, = 0, we have N, = N,, = 0, which impliese = f = g =
0 due to (113). Conversely, if e = f = g = 0, then by (116) we have a;; = 0 for all 1 < ¢, j < 2, which
implies dN,, = 0. From this observation, 3 and 4 are clear. U

Lemma 2.97 The two principal curvatures ki, ky at p € S are given by
kh=H++VH?-K, k=H-vVH?-K.

where K 1s the Gauss curvature of S at p and H is the mean curvature of S at p. In particular,

we see that ki, ko are continuous functions on their domain and differentiable except at umbilical
points (where H> = K ).

Proof. Since ki, ky are eigenvalues of —dN,,, we have
det (—dN, — k;I) = det (AN, + k;I) =0, i=1, 2,
i.e. k1, ko are the two roots of the characteristic polynomial

a1 + )\ a921
a12 Q9o + A

det(—de—)\[):det< ):)\2—2H)\+K:O.

The result follows. O
Example 2.98 Consider the parametrization of the torus given by (a >1r > 0)
x (u,v) = ((a 4+ rcosu)cosv, (a+rcosu)sinv, rsinu), 0<u<2m, 0<v<2m.

We compute
X, = (—rsinwucosv, —rsinusinv, rcosu)

x, = (— (a + rcosu)sinv, (a+ rcosu)cosv, 0)
Xyy = (—rcosucosv, —rcosusinv, —rsinu)

Xyp = (rsinusinv, —rsinucosv, 0)

Xy = (— (@ + rcosu)cosv, — (a+rcosu)sinv, 0)
and get

E = (xy,x,) = r?, F= (X4, X) =0, G =(x4,%x,) = (a+rcosu)2.

Also we have

e = <N7 qu> - <Xu A X, qu>

Xy A Xy
r*(a4rcosu)

= ——det (Xu, Xy, qu) =

VEG — F?

r(a-+rcosu)
Stmilarly, we obtain

det (Xy, Xy, Xuw)

f_ 207

r(a+ rcosu)

_ det (X4, Xy, Xuw)

= (a + rcosu) cos u.
r(a+ rcosu)
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Hence the Gauss curvature K (u,v) at the point x (u,v) is given by

eqg — f2 cos U
K = fr—
(u,v) EG—F? r(a+rcosu)’

0 <u<2m. (120)

By (120), we can easily locate elliptic points, hyperbolic points and parabolic points on the torus.
See the picture in p. 160 of the book.

Proposition 2.99 (This is Proposition 1 in p. 160.) Let p € S be an elliptic point. Then
there ezists a neighborhood V' of p in S such that all points in V' belong to the same side of T,,S. If
p € S is a hyperbolic point, then in each neighborhood of p there exist points of S in both sides of
T,S.

Remark 2.100 (Important.) There is no result similar to the above proposition for a parabolic
or planar point.

Proof. We use Taylor series expansion. Let x (u,v) be a parametrization near p with x (0,0) =
p. The distance from the point x (u,v) to the tangent plane 7,5 is given by

d(u,v) = (x(u,v) —x(0,0), N (p)).

By Taylor series expansion (for vector-valued functions), we have

1
x (u,v) =x(0,0) + x,u + x,v + 5 (xmﬂf + 2%, UV + xwvz) + R,

where the derivatives are evaluated at (0,0) and R = R (u,v) satisfies (note that R is a vector)

R
li — =0.
(u,v)lirzo,o) u? + 2

Now we can plug the above into d (u,v) to get

1 _
d (u,v) = <xuu + X,U + = (xuuu2 + 2%, UV + va2> +R, N (p)>

\2 7
1, ) 1
k) (ew® + 2fuv + gv*) +R = §I[p (w)+R (121)
~ ~~ ——

where w = x,u + x,v € T,,S and

(ew® + 2fuv + gv?)

DN | —

11, (w) = — (AN, (x,u + X,v) , X, u + X,v) =

and R = (R, N (p)), with

R
li — =0. 122
(u,v)lg%o,o) u? + 12 (122)
We can rewrite (121) as (we may assume w # 0)
1 w R w
d (u,v) = |w|? (—II <—> + —) , T is unit vector (123)
2 "\Jwl/)  |w]? |w]

and note that

11, (-2 ) = normal curvature along direction v eTl,S.
"\ w| jw| ~ "
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Moreover, we also have (see (122) and Remark 2.101 below)

B R

lim — = lm ——w—
(u0)=(0,0) |w|”  (w0)=(0,0) [x,u + X,v]

2 2 R
—  lim ( K 2) = 0. (124)
(u,v)—(0,0) ‘qu -+ XU/U‘ u +v

If p is an elliptic point (assume that k; (p) > ko (p) > 0), then

11, (%) > ko (p) >0 for any nonzero w € T,,S.

Hence for |w| # 0 small enough, we have

1 R R
—[Ip <£) +— > ko (p) +—s > 0, (125)
2 \Jwl) -l ]

i.e., for all (u,v) close to (0,0), we have d (u,v) > 0. Thus all such x (u,v) lies on the same side of
T,S.

If p is a hyperbolic point with k; (p) > 0 and ko (p) < 0), then there exist (u,v) and (@, v) such
that d (u,v) > 0 and d (@,7) < 0. Hence (u,v) and (@, v) lie on different sides of 7,S. The proof is
done. O

Remark 2.101 This is to explain that the quantity (u®+ v?)/|x,u+x,0|° stays bounded as
(u,v) — (0,0). We have

2 2 2 2
ue +v B ue +v (126)

ot + xv)? w2 [xy (0, 0)) 4 20 (x4 (u, ), X, (0, 0)) + 02 |%, (0, v))?

and as (u,v) — (0,0), we have

|%u (u, U)|2 — |x4 (0, 0)|2 ) %, (u, U)|2 — [x, (0, 0)|2
(xy (u,v),%, (u,v)) — (x,(0,0),x,(0,0)) .
If we write (u,v) as (rcosf,rsinf), we get

u? + v?
u? %, (u, 0)|° + 2uw (%, (u,0) , %, (1, 0)) + 02 |x, (u,v)]?

7.2

(r2cos?0) [x, () + (22 cos Osin ) (x, (%), %, (%)) + (r2sin0) |x, () [?
1

_ , 127
(cos? ) [x, (%)]° + (2cos Osinb) (x, (*), %, (%)) + (sin”0) |x, (%) [? (127)

where (x) = (rcosf,rsinf). As (u,v) — (0,0), the denominator in (127) is like (the angle 0 may
not have a limit as (u,v) — (0,0), it will move around in the interval [0, 27])

cos . sin |x,, (0,0)’2 (x, (0,0),x,(0,0)) cos f
(eost 9)< (xu (0,0),%, (0,0)) [x, (0,0)|” ) ( sin 0 > (128)

Note that the symmetric matriz

(1% (0,0)) (x, (0,0),%, (0,0))
A'(<xu<o,0>,xv<o,0>> 1%, (0,0)? )
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is positive-definite and so as 0 runs over [0,27], the minimal quantity in (128) is equal to

min  (Av,v) = Ay > 0, (129)

vERZ? |v|=1
where Ay > 0 is the minimum eigenvalue of A. Hence we have
. I, (0,0)]? (x,(0,0),x%,(0,0)) cos 6
) > 1
(cos§, sin ) ( (%, (0,0), %, (0,0)) [, (0,0 sng ) ZA>0 (130)
for all 0 € [0,27]. This will imply the assertion.

At a parabolic or planar point, there is no result similar to the above proposition. For sim-
plicity, we only look at the case of a planar point. We can compare the following two examples.

Example 2.102 (This is Example 6 in p. 145.) (Read this example by yourself.) Consider
the surface of revolution S obtained by rotaing the curve z = y* about the z-axis. At the point
p=(0,0,0) we have dN, = 0. This is because each normal section of S at p has zero curvature
(since the curve z = y* has zero curvature at (0,0)). Therefore, along any unit vector direction
v € T,S, the normal curvature is (—dN, (v),v) = 0. By Lemma 2.17, we have dN, =0 and so p is
a planar point. For this example, the whole surface S lies on one side of T,S.

Example 2.103 (This is Example 2 in p. 161.) (Read this example by yourself.) Consider
the Monkey Saddle parametrized by x (u,v) = (x (u,v),y (u,v), z (u,v)), where

r(u,v)=u, yuv)=v, z(uv)=u®—3.
One can check that at the point (0,0,0), the coefficients of the second fundamental form are e =
f =9 =0 (due to Xyy = Xy = Xy = 0 at p). Hence it is a planar point. However, in any
neighborhood of this point, there are points on both sides of the tangent plane at (0,0,0) (look at
x (u,u) = (u, u, —2u®), u € (—o00,00)). See picture in p. 162.

2.2.1 The Differential Equations for the Asymptotic Curves and the Lines of Curva-
ture.

The equation for asymptotic curves. Let x (u,v) be a parametrization near p = x(0,0) € S
and let e = e (u,v), f = f(u,v), g = g(u,v) be the coefficients of the second fundamental form.
Let a(t) = x(u(t),v(t)), t € I, be a regular curve on S which is an asymptotic curve. Then we
have

[[a(t) (Ck/ (t)) =0 forall tel. (131)

We recall that
11,0, (o (1)) = = (AN, ,, (o/ (1)) .0/ (1))
= — (N + Ny', x,0/ +x,0") = e (u)> + 2fu/'v' + g (v')? . (132)

Therefore, in local coordinates, the differential equation for an asymptotic curve x (u (¢) ,v (t))
is given by

e(W) +2fuv +g(W) =0, tel. (133)
Note that (133) is equivalent to (131).

Remark 2.104 Be careful that the identity

(4N, @ (1)), () =0

does not imply that dN_, (o' (t)) = 0. For example, we have the following

v (a3) (aa)(5) ()=
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Remark 2.105 (Important.) The equation (133) is independent of reparametrization of
a (t). Therefore, (136) is valid regardless of whether a(t) is parametrized by arc length s or not.

In particular, if p € S is a hyperbolic point (i.e. eg — f> < 0 < 0 at p), then Lemma 2.64
says that there are two asymptotic directions at p. By continuity we know eg — f2 < 0 in some
neighborhood of p and all points on this neighborhood are hyperbolic and have two asymptotic
directions. In such a case, we have the following interesting fact :

Lemma 2.106 Assume all points on some neighborhood V' around p € S are hyperbolic point.
A necessary and sufficient condition for the coordinate curves (u = ug, v = v (t) oru = u(t),
v = 1g) near p to be asymptotic curves is e = g = 0 in that neighborhood.

Proof. (=) If in some neighborhood V' of p the two family of coordinate curves u = ug, v =
v (t) and uw = u (t), v = vg. are all asymptotic curves, then for the first case we have v’ = 0 and the
differential equation (133) is satisfied. Therefore, we obtain

(W) +2fuv +gW) =gW) =0 tel,

which implies ¢ = 0 on V. Similarly for the second case we have e = 0 on V.

(<) If we have e = g = 0 on V, then equation (133) becomes 2fu'v' = 0, where we know
f # 0 everywhere on V' (since all points of V' are hyperbolic). We see that any coordinate curve in
V' can satisfy the equation 2 fu'v’ = 0. The proof is done. O

Remark 2.107 The above lemma says that if we can find x (u,v) so that e (u,v) = g (u,v) =0 in
a neighborhood near p, then all coordinate curves of x (u,v) in that neighborhood are asymptotic
curves.

Remark 2.108 Note that if eg — f? > 0 at p (elliptic point), there is no asymptotic curve near
P.

What happens for a parabolic point p € S, i.e. eg — f2 =0 at p (but not e = f = g = 0 at
p). Unlike elliptic or hyperbolic point, a parabolic point can be isolated. In such a case, there is
not much to discuss at all. However, if we have eg — f? = 0 on some neighborhood around p, we
have:

Lemma 2.109 Assume all points on some neighborhood V' around p € S are parabolic points
(for example, a cylinder). A necessary and sufficient condition for the coordinate curves u = uy,
v =w(t), t € I, lying inside V to be asymptotic curves is e # 0 (everywhere on V) and
g = f =0 (everywhere on'V ).

Remark 2.110 If the coordinate curves have the form u = u(t), v = v, t € I, then the condition
becomes g # 0 (everywhere on V') and e = f = 0 (everywhere on V).

Proof. By Lemma 2.64, we know there is exactly one asymptotic direction at each point
of V. Assume the coordinate curve u = ug, v = v(t), t € I, is an asymptotic curve lying
inside V, then by (133) we have (note that v’ (t) # 0 everywhere, for simplicity,we may assume
v(t)=t, tel)
g (uo,v (1)) (V' (1))" =0, tel,
which gives g (ug,v (t)) = 0 for all t € I and so g = 0 everywhere on V. Since we also have eg — f2 =
0 everywhere on V, we must have f = 0 everywhere on V. Moreover, since all points on V' are
parabolic points, we must have e # 0 everywhere on V.
Conversely, if we have e # 0, g = f = 0 everywhere on V, then the equation (133) becomes

e (W) 4+ 2fu'v' + g (W) =e @)’ = 0. (134)

Therefore, any coordinate curve of the form u = wuy, v =v (t), t € I, is an asymptotic curve as
long as it lies inside V. U
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The equation for lines of curvature. We now turn to the differential equation for a line of
curvature. For a line of curvature we have the condition

AN, (@' (t)) = A(t)d/(t), forallte I, for some function A (%),

o ()= (o i) (7))
v Q21 Qg2 v

dN . (' (t)) = (ap1u' + a0 )%, + (a1t + agv’)x,.

a(t)

where o/ = x,u’ + x,v" and by

we have

we conclude that v’ (t) and v’ (t) satisfy the 2 x 2 system of equations

fF—eG gF — fG ,

EG—FQUI—FEG—FQU_)\UI'” (1)

(135)
F—fFE F—gF
ZG _fF2u’+ {?G _ngv’ =\ (2)

due to the identity

aip Qao1 o 1 € f —G F
a2 ax» ) EG-—F2\ [ ¢ Fr  —-F )

The system (135) is not self-contained (which means we cannot solve it directly), so we
need to eliminate the function A\. We consider (1) - v" — (2) - v’ and get

(fE — eF) (u')* + (gF — eG)u'V + (gF — fG) (v')* =0, (136)

which may also be written as as
E F G |=o0 (137)
We call (136) the differential equation for a line of curvature. Note that in (136), the coeffi-

cients £, F, G, e, f, g are all functions of (u,v).

Remark 2.111 (Important.) The equation (136) is independent of reparametrization of
a (t). Therefore, (136) is valid regardless of whether a(t) is parametrized by arc length s or not.

We note the following:

Lemma 2.112 (Read this lemma by yourself.) The 2 x 2 system of equations (135) and the
single equation (136) are equivalent.

Proof. If we have equation (136), it clearly imply the system (135).
Conversely, if (136) is satisfied, then we can infer

fF—eG,+gF—fG, r_ 6F—fE,+fF—gE, /
G- "B )" T\ e m" TEG-r2" )"

and if v/ (t) # 0 and v’ (t) # 0, we can write the above as

1 (fF—eG ,+gF—fGU,): 1 (eF—fE , JF=9E ) (D),

W \EG-Fr2" TEG - F? v \EG- 2" T EG = 2"
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which gives the system (135) if we use the above function as A (t). If v’ (¢) # 0 and ' (¢) = 0, then
(136) implies (fE —eF) (u(t),v (t)) = 0 and we can deduce the system (135) again using

Mt = L2 (), v (1),

Similarly, for «'(t) = 0 and v’ (¢) # 0, then (136) implies (¢F — fG) (u (t),v (t)) = 0 and we can
deduce the system (135) again using

MO = LEI8 (), v (1),

Thus we conclude that (135) is equivalent to (136). O

We conclude:

Lemma 2.113 Assume all points on some neighborhood V' around p are nonumbilical point. A
necessary and sufficient condition for the coordinate curves (u = uy, v = v (t) or u = u(t),
v =1yg) lying inside V' to be lines of curvature is F'= f =0 on V.

Remark 2.114 In the above lemma, for the statement in the direction (<=) we do not have to
assume that p € S is a nonumbilical point.

Proof. For («<=), assume x (u, v) is a parametrization with the property F = f =0 on V. Then
(136) becomes
(gE — eG) u'v' = 0. (138)

Hence coordinate curves of x (u,v) are lines of curvature. Note that for this part we do not need
p to be a nonumbilical point.

For (=), assume coordinate curves of a parametrization x (u,v) are lines of curvature,
then take v’ =0, v =1 and v/ = 1, v = 0 respectively in (136) to get

gF — fG=0 and fFE —eF =0, respectively on V. (139)

Since all points on V' are nonumbilical and coordinate curves are lines of curvature (the
tangent vectors x, and x, of coordinate curves are pointing to principal directions
and the principal directions are perpendicular), we must have x, | x, everywhere and
so F'=0 on V. The above identity (139) becomes

fG=0 and fE=0. (140)

Since £ > 0 and G > 0 everywhere, we must have f = 0 on V. The proof is done. 0J

2.2.2 Gauss and Mean Curvature for Surfaces of Revolution (Example 4 in p. 163).

Let C be a regular connected curve lying on zz-plane parametrized by arc length parameter
v € (a,b) (here we use notation v instead of s):

(JJ,O,Z)Z(QO(U), 07 ¢(U))a UE(CL,b),

where (¢’ (v))* 4 (¥ (v))* = 1 and ¢ (v) > 0 for all v € (a,b). Consider the surface of revolution
S generated by C' parametrized by

x (u,v) = (¢ (v)cosu, ¢ (v)sinu, P (v)), 0<u<2m, a<wv<b,

where ¢ (v) > 0.
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The coefficients E, F, G of the first fundamental form are

E=¢(v), F=0, G=( ) +@ ) =1 VEG-F=¢().

We compute the coefficients e, f, g of the second fundamental form:

————— det (Xu, Xy, Xuu
VEG — F? ( )
—@ (v)sinu @ (v)cosu 0

STy | @heosu @ @)sinu @) | = —p )¢ (0).
—p(w)cosu —p(v)sinu 0

Similarly, we obtain

/ L det( ) =0
e e XU’XU7XUU -
VEG — 2

and

1

= —————det (X, Xy, Xuw

9= e det )
—p(v)sinu ¢ (v)cosu 0

0] ¢ (v)cosu ¢ (v)sinu ¢ (v) | =¥ (v) " (v) =" (V) ¢ (v) .
(v

¢" (v)cosu " (v)sinu " (v)

Since F' = f = 0 (this fact remains true even if we do not use arc length parameter), we conclude

that the parallels (v = const.) and the meridians (u = const.) are lines of curvature on
S (because they are coordinate curves). See Remark 2.114 also.
The Gauss curvature is

_eg—f _ eg
K=Fc—F " EC
e ) [ )" ()~ ) W) _ ) )
* (v) ’
where, for the last identity in (141), we have used the identity

(@ ) + W )

26" (v) " (v) + 20" (v) " (v) =0

in the numerator. In particular, we conclude: p € S is a parabolic point if either one of the
following occurs (but not both)

{ Y’ (v) =0 (same as e = 0),

(142)
P (v) " (v) =" (v) ¢ (v) =0 (same as g = 0 or curvature of C' is 0)).
However, if both of the above identities holds, then p € S is a planar point.
To find the principal curvatures, by the equations of Weingarten (note that F' = f = 0), we

have
aip a91 _ € f E F _1:_ % 0
12 a922 f g F G 0 %

and see that the two eigenvalues ki, ks of —dN are

e eV )
MEET T AW e )

42



and

by = 2 = (0) ¢ (v) =0 (0) ¢/ (0). (144)
Thus 0
_eg  pr(v
RTEGT oW
and
H= 5 e = S )6 0 - v () ()] (145)

We note that ki, ks, K, H are all independent of u. They depend only on v. This is intuitively
obvious.

To end this example, we state one more interesting result for general surfaces:

Lemma 2.115 If x (u,v), (u,v) € U C R?, is a local parametrization of a reqular surface S C
R3 (not necessarily a surface of revolution) with the property

F(uv) = f(un) =0, ¥ (u,0)€U. (146)
then we must have . p
k’l = E, kg = 5 on U. (147)

Proof. If x (u,v) satisfies (146), the equations of Weingarten becomes

(o) Fe) (7 %)
a2 as ) Iy F G B 0 G ’

which means the —dN has the two eigenvalues & and & and they are k; and k; respectively. The
proof is done. O

o &

2.2.3 Gauss and Mean Curvature for Graphs (Example 5 in p. 165).

Assume that S : z = h(x,y) is the graph of a differentiable function defined on some open set
U C R2. Clearly we can parametrize S by

x(zv,y) = (v, y, h(z,9)), (v,y) €U

and get
(x,=(1, 0, hy), x,=(0,1, hy),
Xez = (0, 0, hyy), Xgy = (0, 0, hyy), Xy = (0, 0, hy,),
E(z,y)=1+h2, F(x,y)=hshy, G(z,y)=1+h,
{ EG - F*=1+h}+h,
and then (h b 1)
N (z,y) = S v
(14 h2 + h2)
and . h
€= <N7 Xxx) - = )
(1+h2 +h2)"?
f=(N, x4y) iy 4
- y Apy) — 5 148
T+ )t (148)
h
g={(N, x,) = = :
\ T ener)”

We conclude:
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Lemma 2.116 The Gauss curvature and mean curvature of a graphic surface z = h (z,y), (x,y) €
U, are given by
eg — f? o haghyy — h?:y

K = = 14
(©.9) = 56— (1+h2 +h2)* (=9) €U (149)
and
_ leG —2fF +gE
Hy) =5—Fa
1(1+ h2) hyy — 2hyhy + (1 +h2) R
_5( ) 5 2 (v,y) €U (150)

(14 h2 + h2)
2.2.4 Gauss and Mean Curvature for Graphs with Special Coordinates (continue Ex-
ample 5 in p. 165).

At a point p € S, it is possible to choose a coordinate system so that 7,5 is the zy-plane, N is
pointing in the positive z direction, p is the origin (0,0, 0), and near p, the surface S is the graph
of a function z = h (z,y), (z,y) € U, where h satisfies

h(0,0)=0, hy(0,0)=0, h,(0,0)=0. (151)

One can see Exercise 26 in p. 93 for the above properties.
Now if we use the above-mentioned parametrization x (z,y) = (x,y,h(z,y)), (x,y) € U, we
have
E(0,0)=1, F(0,0)0=0, G(0,0)=1 (152)

and
e(0,0) = hyy (0,0),  f(0,0) = hyy (0,0), ¢(0,0) = hy, (0,0). (153)

By the equations of Weingarten, we have
()= )(re)
Q12 Q22 [y F G
e f Rz (0,0 0) >
S = — . 154
(f 9) (hxy(oo 0) (154)

So the map dN, : T,,S — T,S with respect to the orthonormal basis {x,,x,} = {(1,0),(0,1)} of

the xy-plane is given by
x =y (0,0) > ( x >
—dN, = v 155
8 < Yy ) ( yy (0,0) Y (155)

and the second fundamental form 1, (v) = — (dN, (v),v) : T,S — R is given by
11, (v) = gy (0,0) 22 4 2hy, (0,0) 2y + hy, (0,0) 4, v = (1,y). (156)

The matrix in (155) is known as the Hessian matrix of i at (0,0) . Note that at this moment we
may not have h,, (0,0) = 0. However, we can make h,, (0,0) = 0 by a rotation in the zy-plane.
If k1 = ko (denote the common number as k) at p, then we must have —dN, = kI and we have

hayy (0,0) =k, hyy(0,0) =0, hy, (0,0) =%k

for the above orthonormal basis {x,,x,} = {(1,0),(0,1)}.
If k1 # ko, the two principal directions e; and e; must be perpendicular to each other and we
can rotate the above xy-plane so that the x and y axes are directed along the principal directions
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e; and ey. That is, after rotation, we have e; = (1,0) and ey = (0,1). Since they are eigenvectors
of —dN, : T,S — T,S, by (155), we have

- (o) = (zlow o
o0 ()= (helorny ) = (1)

hao (0,0) = ki, hay (0,0) =0, hyy (0,0) = ky. (157)
and by (153) we conclude

and

Hence we must have

€(0,0) = hyy (0,0) = ky,  £(0,0) = hyy (0,0) =0, ¢ (0,0) = hyy, (0,0) = k. (158)
The matrix for —dN, with respect to {x,,x,} = {(1,0),(0,1)} is now diagonal, given by
< Rz (0,0)  hygy (0,0) ) _ ( ki 0 >
By (0,0)  hy, (0,0) 0 ko /)~
By Taylor series expansion, the function z = h (z,y) near (0,0) has the form (note that we have

(151))

h(z,y) = = (hew (0,0) 2% + 2hyy (0,0) 2y + hyy (0,0) y?) + R (2,y)

N =N =

(kr2? + kay?) + R (2, y) | (159)

where R (z,y) satisfies
R
m @Y
(@)= (0.0) 2% + Y2

2.2.5 Geometric Interpretation of the Gauss Curvature.

Let S and S “be two orientable surfaces with orientation N (differentiable unit normal vector field
on S) and N (differentiable unit normal vector field on S) respectively. Let ¢ : S — S be a
differentiable map and assume at p € S the map dy, : 7,5 — TS is nonsingular.

Definition 2.117 We say the map ¢ : S — S is orientation-preserving at p if, for any positive
basis {v,w} on T,S (which means v Aw is pointing in the direction of N (p) , i.e. det (v,w, N (p)) >
0), the basis {dy, (v),dp, (W)} on Ty S is also positive on Ty, S (which means d, (v) Nde, (w)

is pointing in the direction of N (¢ (p)), i.e. det <d<pp (v), deg, (w), N (¢ (p))> > 0)). Otherwise, the

map p: S — S is called orientation-reversing at p, which means that dpp : T,S — Tw(p)g maps
some positive basis on T,S into negative basis on TS {v, w} .

Let S be an orientable surface with orientation N : S — S? and dN, is nonsingular at p €

S. By the inverse function theorem, there is a small neighborhood V' C S around p € S such
that

N:V cS— N(V) (denote it as V) C S (160)

is a diffeomorphism and either K > 0 everywhere on V or K < 0 everywhere on V.

The Gauss map N : V — V will induce an orientation on V C S? (since we can identify
Tn(p)S? as T, S and choose the orientation on Tiy(,)S? to be the same as the orientation on 7,5). By
the identity

ANy (0) NdNy (w) =K (¢) (vAw), YqeV, v, wel,sS, (161)

45



we see that if X' > 0 everywhere on V, then both vAw and dN, (v) AdN, (w) are pointing to the same
direction. That is, if {v, w} is positive on 7,5 (the domain space of dNN,), then {dN, (v),dN, (w)}
is also positive on 7,S (the target space of dN,). By definition, the Gauss map N : V — V is
orientation-preserving at any ¢ € V. On the other hand, if K < 0 everywhere on V, the Gauss
map N : V — V is orientation-reversing at any ¢ € V. Therefore, we conclude:

Lemma 2.118 N : V — V is orientation-preserving (orientation-reversing) at all ¢ € V' if and
only if K >0 (K <0) everywhere on V.

Remark 2.119 Let a(s) € V' (on V there is an orientation N ), s € I, be a small simple closed
curve enclosing p in its interior and is counterclockwise, which means that when you walk along
a (s) € V in the length-increasing direction, the vector o (so) A’ (sg + €) (€ > 0 is small) is pointing
to the direction of N («(so)) for all sy € I. Now by (161) we have

d% ) N(a(s))/\d% ) N (a(s)), N (a(s)) € S?
= [dNa) (@ (50)) A dNagepie (0 (s0+ )] ~ K (e (s0)) [ (s0) A (s +€)] . (162)

If we have K > 0 on V, then the vector dNy(sy) (& (50)) A dNa(sy+e) (& (S0 4 €)) is also pointing
to the direction of N (a(sq)) (note that N (a(sq)) € S? and we choose the normal N on S* at
N (a(s0)) as N (a(so)), i.e. N(N(a(s9))) = N (a(sg))). Therefore, the curve N (a(s)) on S?
also has counterclockwise orientation as s is increasing. On the other hand, if K < 0 on V| the
curve N (a(s)) on S* has the property that - N(a(s))n L ssgse V (a(s)) is pointing to the
direction of —N («(sq)). Therefore, the curve N (a(s)) on S? has clockwise orientation as s is
INCreasing.

s=$0

We use the convention that if K > 0 in V, then the area of the set N (V) in S? has a positive
sign. While if K < 0 in V, then the area of the set N (V') in S? has a negative sign. Under this
convention, N (V') has a signed area.

With the above convention, we can state the following:

Proposition 2.120 (This is Proposition 2 in p. 169.) (Geometric meaning of the Gauss
curvature.) Let p € S (with Gauss map N : S — S?) such that K (p) # 0, and V be a connected
neighborhood around p € S such that either K >0 inV or K <0 inV (here N:V — N (V) is a
diffeomorphism). Then

!/

. Asign
K (p) = }‘{I}O T4 (163)

where A is the area of the region B C 'V containing p, Al,,, is the signed area of N (B) in S,

and the limit is taken through a sequence of regions B, that converges to p in the sense that any
sphere around p contains all B, for n sufficiently large.

Remark 2.121 FEzxplain the meaning of B,, that converges to p as n — o0.

Proof. The area of B C S is given by

A:// 1%, A X, dudv,
R

where x (u,v) : R C U C R? — S is a parametrization near p € S with x (R) = B. Also the area of

the region N (B) in S? is given by
A = // |Nu A Ny| dudv
R
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since N (u,v) = N (x (u,v)) : R C U C R* — 5% is a parametrization near N (p) € S? with N (R) =
N (B) . By the identity (see Lemma 2.78)

|Ny A N,| = |dN (x,) AdN (x,)| = | K| |xu A Xy,

we have
Align = // K |x, A X,| dudv.
R
Hence o . " ]
sign . R U A v K u A v
i Ay F L K b Al dudy K () b n 6 ) _
As0 A r—0 & [ |xy A x,| dudv %y A x| (p)

O

Remark 2.122 We can compare the above lemma with the curve case. Recall that for a reqular
parametrized curve C C R? we have

JAN
_ D (p) = lim —9, 0 is the tangent angle,

signed curvature = k (p) = T Jim
S S— S

where NG is the signed length on the unit circle S' of the image of /s under the map of the
unit tangent vector T (A0 > 0 for counterclockwise orientation curve and A0 < 0 for clockwise
orientation curve). But it is the same as the signed length on S of the image of As under the
map of the unit normal vector N.

To Be Continued

2.2.6 The Hessain of a regular surface in R3.
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