
Lecture Note for Di¤erential Geometry Course, fall, 2023

Revised on 2023-11-14

1 Chapter 2: Regular Surfaces.

Remark 1.1 You may have to read the Appendix of this chapter in p.120 �rst, if you have forgotten
some stu¤ in Advanced Calculus.

1.1 The First Fundamental Form; Area (this is Section 2-5 of the text-
book).

Let S � R3 be a regular surface: The natural inner product of R3 induces on each tangent
plane TpS � R3 an inner product, denoted as h; ip : For any w1; w2 2 TpS; then hw1; w2ip is
equal to the inner product of w1 and w2 viewed as vectors in R3:

De�nition 1.2 The map
Ip (w) = hw;wip = jwj

2 : TpS ! R (1)

is called the �rst fundamental form of the regular surface S at p 2 S: In Linear Algebra termi-
nology, Ip (w) is called a quadratic form on the tangent space TpS:

Remark 1.3 The �rst fundamental form is the expression of how the surface S inherits the natural
inner product of R3: One can use it to measure the length of curves on S or the area of a region on
S:

De�nition 1.4 If x (u; v) : U � R2 ! R3 is a local parametrization at p = x (u0; v0) 2 S with basis
fxu;xvg ; then the following three functions

E (u0; v0) = hxu;xuip ; F (u0; v0) = hxu;xvip ; G (u0; v0) = hxv;xvip ; (2)

are called the coe¢ cients of the �rst fundamental form in the basis fxu;xvg of TpS:

Remark 1.5 Since xu (u; v) and xv (u; v) are di¤erentiable map of (u; v) 2 U into R3; the three
functions

E (u; v) ; F (u; v) ; G (u; v) : (u; v) 2 U ! R

are all di¤erentiable on U:

If � (t) = x (u (t) ; v (t)) : (�"; ")! S is a di¤erentiable curve with � (0) = x (u0; v0) = p; then

Ip (�
0 (0)) = h�0 (0) ; �0 (0)ip

= hxu (u0; v0)u0 (0) + xv (u0; v0) v0 (0) ;xu (u0; v0)u0 (0) + xv (u0; v0) v0 (0)ip
= E (u0; v0) (u

0 (0))
2
+ 2F (u0; v0)u

0 (0) v0 (0) +G (u0; v0) (v
0 (0))

2

= (u0 (0) ; v0 (0))

�
E (u0; v0) F (u0; v0)
F (u0; v0) G (u0; v0)

��
u0 (0)
v0 (0)

�
| {z } :

Lemma 1.6 The matrix �
E (u0; v0) F (u0; v0)
F (u0; v0) G (u0; v0)

�
(3)

is symmetric and positive de�nite.
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Proof. It is clear that it is symmetric. To show positive de�nite, it is equivalent to saying that

E (u0; v0) > 0; E (u0; v0)G (u0; v0)� F 2 (u0; v0) > 0 (4)

((4) will imply that G (u0; v0) > 0 also). This is easy by the Cauchy-Schwarz inequality. �
Remark 1.7 One can also use de�nition to see that (3) is positive de�nite since it is the components
of an inner product, which is positive de�nite, or one can see that

(a; b)

�
E (u0; v0) F (u0; v0)
F (u0; v0) G (u0; v0)

��
a
b

�
> 0; 8 (a; b) 6= (0; 0) 2 R2:

Example 1.8 Do Example 1, 2, 3 in p. 95.

We can use the �rst fundamental form I to answer metric questions on S without further
references to the ambient space R3: Let � (t) : 0 2 I ! S � R3 be a curve on S: Its arc length
parameter s is given by

s (t) =

Z t

0

j�0 (t)j dt =
Z t

0

p
I (�0 (t))dt; �0 (t) = xu (u (t) ; v (t))u

0 (t) + xv (u (t) ; v (t)) v
0 (t)

=

Z t

0

q
E (u (t) ; v (t)) (u0 (t))2 + 2F (u (t) ; v (t))u0 (t) v0 (t) +G (u (t) ; v (t)) (v0 (t))2dt

=

Z t

0

q
E (u0)2 + 2Fu0v0 +G (v0)2dt; t 2 I: (5)

Remark 1.9 (Notation.) We usually write (5) as the convenient form

ds2 = Edu2 + 2Fdudv +Gdv2;

which means that if � (t) = x (u (t) ; v (t)) is a curve on S with arc length s = s (t) ; then�
ds

dt

�2
= E (u (t) ; v (t))

�
du

dt

�2
+ 2F (u (t) ; v (t))

du

dt

dv

dt
+G (u (t) ; v (t))

�
dv

dt

�2
:

Remark 1.10 If S is the cylinder in Example 2 in p. 95, we have E � 1; F � 0; G � 1 and
then

s (t) =

Z t

0

j�0 (t)j dt =
Z t

0

p
I (�0 (t))dt =

Z t

0

q
(u0 (t))2 + (v0 (t))2dt; t 2 (�"; ") ;

i.e., the length between any two points of � (t) on S is equal to the length of its corresponding two
points on (u (t) ; v (t)) 2 U: In this case, we say the cylinder is isometric to the open set in R2 :

U =
�
(u; v) 2 R2 : 0 < u < 2�; �1 < v <1

	
� R2:

From the viewpoint of "metric geometry", the cylinder is the same as the plane. How-
ever, they have di¤erent curvature (more precisely, di¤erent mean curvature).

With the help of the �rst fundamental form I on S; we can also discuss the angle between two
vectors on the same tangent space. In particular, if � (t) : I ! S and � (t) : I ! S are two curves
on S and they intersect at t = t0; their intersection angle � 2 [0; �] between the two curves is de�ned
as

cos � =
h�0 (t0) ; �0 (t0)i
j�0 (t0)j j�0 (t0)j

2 [�1; 1] :

In particular, the angle ' between the two coordinate curves x (�; v) ; x (u; �) of a parametrization
x (u; v) is given by

cos' =
hxu;xvi
jxuj jxvj

=
Fp
EG

:

Thus the coordinate curves of a parametrization x (u; v) are orthogonal everywhere if and only if
F (u; v) = 0 for all (u; v) : Such a parametrization is called an orthogonal parametrization.
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Example 1.11 Do Example 4 in p. 98.

Remark 1.12 The following integral formula is for your reference when you read p. 99:Z
1

sin �
d� =

Z
csc �d� =

Z
csc2 � � csc � cot �
csc � � cot � d� =

Z d
d�
(csc � � cot �)
csc � � cot � d�

= log jcsc � � cot �j = log
����1� cos �sin �

���� = log
����� 2 sin2 �

2

2 sin �
2
cos �

2

����� = log
����tan �2

���� :
1.1.1 Area Formula on a Regular Surface (this is Section 2-5 of the textbook).

De�nition 1.13 See p. 99 for the de�nition of a (regular) domain and region on S:

Remark 1.14 Explain the meaning of domain and region on S:

Recall that if a; b are two vectors in R3; then

ja ^ bj = area of the parallelogram generated by a; b:

Motivated by this, if x : U ! S is a local parametrization and Q � U is a compact region with
boundary a piecewise smooth simple closed curve, we de�ne the area of R = x (Q) � S as:

A (R) =

ZZ
Q

jxu ^ xvj dudv: (6)

We also use
RR
R
d� to denote the area A (R) of R � S:

Lemma 1.15 The above de�nition does not depend on the parametrization x (u; v) :

Proof. Assume we have another parametrization �x (�u; �v) : �U � R2 ! S such that �x
�
�Q
�
= x (Q) =

R; where �Q � �U is a compact region with boundary a piecewise smooth simple closed curve. Then
we have Q = x�1 � �x

�
�Q
�
and due to the change of parameter function h = x�1 � �x one can express

(u; v) 2 Q = h
�
�Q
�
as a function of (�u; �v) 2 �Q (such a relation is a di¤eomorphism). We now

have the following identities(
(u; v) = h (�u; �v) = (u (�u; �v) ; v (�u; �v)) ;

�x (�u; �v) = x � h (�u; �v) = x (u (�u; �v) ; v (�u; �v)) ;

and by the chain rule

�x�u =
@u

@�u
xu +

@v

@�u
xv; �x�v =

@u

@�v
xu +

@v

@�v
xv;

we get

�x�u ^ �x�v =
�
@u

@�u
xu +

@v

@�u
xv

�
^
�
@u

@�v
xu +

@v

@�v
xv

�
= det

�
@u
@�u

@u
@�v

@v
@�u

@v
@�v

�
� (xu ^ xv) (7)

More precisely, (7) is the same as

�x�u (�u; �v) ^ �x�v (�u; �v)| {z }
= det

�
@u
@�u

@u
@�v

@v
@�u

@v
@�v

�
� (xu (u (�u; �v) ; v (�u; �v)) ^ xv (u (�u; �v) ; v (�u; �v)))

= (xu (h (�u; �v)) ^ xv (h (�u; �v)))
@ (u; v)

@ (�u; �v)| {z }; 8 (�u; �v) 2 �Q: (8)
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Now by the change of variables formula for multiple integrals (see the book byMarsden "Elementary
Classical Analysis, 2nd edition", p. 523), we have (note that Q = h

�
�Q
�
)ZZ

Q

jxu (u; v) ^ xv (u; v)j dudv

=

ZZ
�Q

jxu (h (�u; �v)) ^ xv (h (�u; �v))j
����@ (u; v)@ (�u; �v)

���� d�ud�v = ZZ
�Q

j�x�u (�u; �v) ^ �x�v (�u; �v)j d�ud�v (9)

and we conclude ZZ
Q

jxu ^ xvj dudv =
ZZ

�Q

j�x�u ^ �x�vj d�ud�v; (10)

i.e., the above de�nition is independent of the parametrizations we used. �

Remark 1.16 The assumption that the domain R � S is contained in the image of a single para-
metrization is not very serious since in most examples there exists a parametrization x which cover
the entire surface except for some curves, which do not contribute to the area.

Remark 1.17 By the identity

jxu ^ xvj2 + hxu;xvi2 = jxuj2 jxvj2 ;

we have
jxu ^ xvj2 = jxuj2 jxvj2 � hxu;xvi2 ;

i.e.
jxu ^ xvj =

p
EG� F 2:

Hence we can express A (R) as

A (R) =

ZZ
Q

p
EG� F 2dudv = A (R) =

ZZ
Q

s���� hxu;xui hxu;xvi
hxv;xui hxv;xvi

����dudv: (11)

Example 1.18 Do Example 5 in p. 101.

1.2 Gradient on Surfaces (this is Exercise 14 in p. 104, Section 2-5, of
the textbook).

De�nition 1.19 The gradient of a di¤erentiable function f : S ! R is a di¤erentiable map

grad f : S ! R3; (12)

which assigns to each p 2 S a vector grad f (p) 2 TpS � R3 such that (the following identity is the
de�nition of grad f (p))

hgrad f (p) ; vip = dfp (v) for all v 2 TpS: (13)

By property in linear algebra, the vector grad f (p) satisfying (13) exists and is unique. If there
are two vectors v1; v2 2 TpS which satis�es

hv1; vi = dfp (v) for all v 2 TpS

and
hv2; vi = dfp (v) for all v 2 TpS;

then we must have v1 = v2: Geometrically, one can view grad f : S ! R3 as a vector �eld on S.
It assigns each p 2 S a vector grad f (p) 2 TpS:
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Remark 1.20 For simplicity, we usually use the notation rSf : S ! TpS � R3 to denote the
gradient of f : S ! R on the surface S: Therefore, we have

hrSf (p) ; vi = dfp (v) for all v 2 TpS: (14)

Since rSf is a vector �eld on S; it can be expressed as a linear combination of the basis
fxu; xvg : Write

rSf = axu + bxv:

Then

fu = dfp (xu) = hrSf; xui = haxu + bxv; xui = aE + bF; fu =
@

@u
f (x (u; v)) : (15)

Similarly we have

fv = dfp (xv) = hrSf; xvi = haxu + bxv; xvi = aF + bG; fu =
@

@u
f (x (u; v)) : (16)

Hence we get the matrix relation�
fu
fv

�
=

�
E F
F G

��
a
b

�
()

�
a
b

�
=

�
E F
F G

��1�
fu
fv

�
and obtain, under a local parametrization x (u; v) ; the expression�

a
b

�
=

1

EG� F 2

�
G �F
�F E

��
fu
fv

�
;

which implies

rSf = axu + bxv =
fuG� fvF

EG� F 2
xu +

fvE � fuF

EG� F 2
xv: (17)

In particular, we see that rSf is a di¤erentiable function on (u; v) 2 U: If S = R2 with Euclidean
coordinates x; y; then we have E = 1; F = 0; G = 1; and the above becomes

rSf =

�
@f

@x

�
e1 +

�
@f

@y

�
e2

where fe1; e2g is the standard basis of R2:Moreover, for a given regular surface S with orthogonal
parametrization x (u; v) : U � R2 ! S � R3; (17) becomes (now we have F � 0)

rSf =
fu
E
xu +

fv
G
xv: (18)

Fix p 2 S and vary v in the unit circle jvj = 1 in TpS centered at p 2 S (denote this compact
set as S1 � TpS), then dfp (v) = hrSf (p) ; vi 2 R attains its maximum value over S1 � TpS at

v =
rSf (p)

jrSf (p)j
; dfp (v) = jrSf (p)j (19)

and attains its minimum value over S1 � TpS at

v = � rSf (p)

jrSf (p)j
; dfp (v) = � jrSf (p)j : (20)

This is clear from (13).
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1.2.1 Comparing Euclidean Gradient and Surface Gradient.

Assume f : R3 ! R is a di¤erentiable function and S � R3 is a regular surface. We can restrict
f onto S and f jS : S ! R is also a di¤erentiable function on S: For �xed p 2 S we have two gradient
vectors at p; namely rf (p) (a vector in the space TpR3 � R3 or one can say it is a vector in the
ambient space R3) and rSf (p) (a vector in the tangent space TpS � R2). We have the following
important result:

Theorem 1.21 Let f : R3 ! R be a di¤erentiable function and S � R3 be a regular surface. The
projection of the vector rf (p) 2 R3 onto TpS is equal to rSf (p) 2 TpS.

Proof. By the de�nition of gradient vector, we have the following:(
(1) : hrf (p) ; vi = dfp (v) ; 8 v 2 R3;

(2) : hrSf (p) ; vi = dfp (v) ; 8 v 2 TpS:
(21)

If we restrict v onto the subspace TpS � R3; then (1) implies

hrf (p) ; vi = dfp (v) ; 8 v 2 TpS: (22)

Since v 2 TpS in (22), we have

hrf (p) ; vi
= h(normal part of rf (p) + tangential part of rf (p)) ; vi
= htangential part of rf (p) ; vi ; 8 v 2 TpS: (23)

Therefore, we conclude

dfp (v) = hrf (p) ; vi =
�
tangential part of rf (p)| {z }; v

�
; 8 v 2 TpS: (24)

By (24) and (2) in (21) and uniqueness of gradient vector, we have

rSf (p) = tangential part of rf (p)| {z } = the projection of rf (p) onto TpS: (25)

The proof is done. �

1.3 Stereographic Projection of S2 (this is Exercise 16 in p. 69, Section
2-2, of the textbook).

Consider the sphere S2 given by
x2 + y2 + (z � 1)2 = 1:

Its north pole N has coordinate (0; 0; 2) : For any (x; y; z) 2 S2; consider the line L joining N
and (x; y; z) : This line L will intersect the xy-plane at a unique point (u; v) 2 R2: The map
� : (x; y; z) 2 S2n (0; 0; 2)! (u; v) 2 R2 is called stereographic projection of S2: To describe it,
it is easier to look at its inverse ��1. Using comparison between two right triangles, we get (here
(x; y; z) 2 S2)

2� z

2
=

p
x2 + y2p
u2 + v2

=

q
1� (z � 1)2
p
u2 + v2

and let 2� z = � (z = 2� �) to get
�

2
=

p
2�� �2p
u2 + v2

:
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This gives (u2 + v2 + 4)�2 = 8� and then

� =
8

u2 + v2 + 4
; z = 2� � = 2� 8

u2 + v2 + 4
=
2 (u2 + v2)

u2 + v2 + 4

For y; we project these two right triangles onto yz-plane to get

2� z

2
=

p
y2p
v2
=
y

v
(if y > 0),

which gives

2� 2 (u2 + v2)

u2 + v2 + 4
=
2y

v
; y =

4v

u2 + v2 + 4
:

Similarly, we project these two right triangles onto xz-plane to get

2� z

2
=

p
x2p
u2
=
x

u
(if x > 0),

which gives

x =
4u

u2 + v2 + 4
:=
4u

H
; where H = u2 + v2 + 4:

We conclude

x (u; v) := ��1 (u; v) = (x (u; v) ; y (u; v) ; z (u; v))

=

�
4u

u2 + v2 + 4
;

4v

u2 + v2 + 4
;
2 (u2 + v2)

u2 + v2 + 4

�
=
1

H

�
4u; 4v; 2

�
u2 + v2

��
; (u; v) 2 R2:

One can check that x is a homeomorphism from R2 onto S2�fNg ; di¤erentiable from R2 into
R3: Moreover

@x

@u
(u; v) =

1

H2

�
�4u2 + 4v2 + 16; �8uv; 16u

�
; H = u2 + v2 + 4

@x

@v
(u; v) =

1

H2

�
�8uv; 4u2 � 4v2 + 16; 16v

�
and so

@x

@u
(u; v) ^ @x

@v
(u; v)

=
1

H4

�
�64u

�
u2 + v2 + 4

�
; �64v

�
u2 + v2 + 4

�
; 16

h
16�

�
u2 + v2

�2i�
:

In particular, we also note that�
@x

@u
(u; v) ;

@x

@v
(u; v)

�
=

1

H4

��
�4u2 + 4v2 + 16

�
(�8uv) + (�8uv)

�
4u2 � 4v2 + 16

�
+ (16u) (16v)

�
= 0; 8 (u; v) 2 R2:

We easily see that @x
@u
(u; v)^ @x

@v
(u; v) 6= (0; 0; 0) for all (u; v) 2 R2 (because @x

@u
(u; v) ? @x

@v
(u; v) and

both are nonzero vectors). Finally we see that one can choose two stereographic projections to cover
the whole S2: One misses the north pole and the other misses the south pole.
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Finally, we compute the coe¢ cients E; F; G of the �rst fundamental form. We have

E (u; v) = hxu;xui

=
1

H4

h�
�4u2 + 4v2 + 16

�2
+ (�8uv)2 + (16u)2

i
=
16

H2
(26)

and

G (u; v) = hxv;xvi

=
1

H4

h
(�8uv)2 +

�
4u2 � 4v2 + 16

�2
+ (16v)2

i
=
16

H2
(27)

and
F (u; v) = hxu;xvi = 0: (28)

We shall see later on that this parametrization x (u; v) : R2 ! S2n f(0; 0; 2)g is a conformal
di¤eomorphism due to

E (u; v) = G (u; v) =
16

H2
; F (u; v) = 0; 8 (u; v) 2 R2 (domain of x). (29)

2 Chapter 3: The Geometry of the Gauss Map.

2.1 The De�nition of the Gauss Map and its Fundamental Properties
(this is Section 3-2 of the book).

2.1.1 Orientation of a Regular Surface S � R3:

We �rst recall the following fact: Let x : U (open set) � R2 ! S � R3 be a parametrization of a
regular surface. The vector

N (q) =
xu ^ xv
jxu ^ xvj

(q) 2 R3; q 2 U (30)

is called the unit normal vector �eld on x (U) � S induced by the parametrization x:
Note: N (q) is normal to S at the point p = x (q) and N : x (U) � S ! R3 is a di¤erentiable
map on x (U) :

Remark 2.1 Since I did not teach Section 2.6 of the book, I will adopt the following de�nition for
a regular surface S � R3 to be orientable.

De�nition 2.2 A regular surface S � R3 is said to be orientable if there exists a di¤erentiable
�eld of unit normal vectors N : S ! R3 on the whole surface S: For simplicity, we just call it
a unit normal vector �eld on S:

Remark 2.3 There exist regular surfaces in R3 which are not orientable. One famous example is
the Möbius strip. See the discussion in p. 108 for it (we will not discuss it).

Remark 2.4 If there exists a parametrization x : U � R2 ! S � R3 such that x (U) = S; then
the unit normal vector �eld N given by (30) is de�ned on the whole surface S: In such a case,
S is orientable. In particular, if S is the graph of a di¤erentiable function f (x; y) de�ned on some
open set U of R2; then it is orientable.

Remark 2.5 We know that every regular surface S is locally orientable. Hence whether S is
orientable or not is a global property.
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In case S is orientable, a choice of N on S is called an orientation on S (this is equivalent to
a choice of compatible coordinate neighborhoods covering S). If S is connected, there are only
two choices of N on it. Therefore, if S is connected, then it has exactly two orientations. If S has
k connected components, then it has 2k orientations.
If S is a regular surface with an orientation N; a basis fv; wg on TpS is called positive if v ^w

is pointing in the direction of N (p) ; i.e. det (v; w;N (p)) > 0. Otherwise, we say it is negative.
If fv; wg and f~v; ~wg are two positive bases on TpS; then its change of coordinates has positive
determinant.
The following says that the inverse image of a regular value of a di¤erentiable function is also

orientable. Thus, in general, it is di¢ cult to �nd nonorientable surfaces in R3:

Lemma 2.6 Let f : U � R3 ! R be a di¤erentiable function and a 2 f (U) is a regular value of
f: Then the surface

S = f(x; y; z) 2 U : f (x; y; z) = ag
is orientable.

Proof. We know that the gradient vector (it is a nonzero vector since a is a regular value)

rf (x; y; z) =
�
@f

@x
(x; y; z) ;

@f

@y
(x; y; z) ;

@f

@y
(x; y; z)

�
; (x; y; z) 2 S

is everywhere perpendicular to S: Thus

N (x; y; z) =
rf (x; y; z)
jrf (x; y; z)j ; (x; y; z) 2 S

is a unit normal �eld on S: By De�nition 2.2, S is orientable. �

Another important result is the following:

Lemma 2.7 Any compact regular surface S � R3 is orientable. Therefore, spheres and ellipsoids
in R3 are both orientable.

Proof. Omit it. �

2.1.2 Gauss Map of a Regular Surface S � R3:

Throughout this chapter (Chapter 3 of the textbook), unless otherwise stated, we
always assume that S is orientable with a chosen orientation N: For simplicity, we call
S a regular surface with an orientation N:

De�nition 2.8 Let S � R3 be a regular surface with an orientation N: The map N : S ! R3 has
its values in the unit sphere

S2 =
�
(x; y; z) 2 R3 : x2 + y2 + z2 = 1

	
:

Thus we can write it as N : S ! S2 and call it the Gauss map of S:

Remark 2.9 Since N : S ! R3 is di¤erentiable (this is due to de�nition), by p. 77, Example 3,
we know that N : S ! S2 is also di¤erentiable. One can also use local parametrization to verify
this. Its di¤erential dNp : TpS ! TN(p)S

2 can be viewed as a linear map from TpS ! TpS because
one can identify TN(p)S2 and TpS (they are parallel planes in R3; both planes are normal to N (p)).
For any v 2 TpS; choose � (t) 2 S; t 2 (�"; ") ; so that � (0) = p; �0 (0) = v: Then we have

dNp (v) =
d

dt

����
t=0

N (� (t)) ; (31)
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or more generally,

dN�(t) (�
0 (t)) =

d

dt
N (� (t)) ; 8 t 2 (�"; ") :

If we write � (t) as x (u (t) ; v (t)) with � (0) = x (u (0) ; v (0)) = p then

N (� (t)) = N (x (u (t) ; v (t)))

and for simplicity we will just write N (x (u (t) ; v (t))) as N (u (t) ; v (t)) with the understanding
that N (u; v) is actually N (x (u; v)) : By this, we have

d

dt
N (� (t)) =

d

dt
N (u (t) ; v (t)) = Nu (u (t) ; v (t))u

0 (t) +Nv (u (t) ; v (t)) v
0 (t) ; 8 t 2 (�"; ")

and
d

dt

����
t=0

N (� (t)) = Nu (p)u
0 (0) +Nv (p) v

0 (0)| {z } :
On the other hand, we can also write the above d

dt

��
t=0

N (� (t)) as

d

dt

����
t=0

N (� (t))

= dNp (�
0 (0)) = dNp [u

0 (0)xu + v0 (0)xv] = u0 (0) dNp (xu) + v0 (0) dNp (xv)| {z } :
In particular, we note that

Nu (p) = dNp (xu) ; Nv (p) = dNp (xv) ; (32)

where xu and xv in (32) are evaluated at (u (0) ; v (0)) 2 U:

Example 2.10 Do Example 2 in p. 139.

Example 2.11 Do Example 3 in p. 141. In this example, we have

dN (x0 (t) ; y0 (t) ; z0 (t)) = (�x0 (t) ;�y0 (t) ; 0) ;

which can be written as

dN [(x0 (t) ; y0 (t) ; 0) + (0; 0; z0 (t))] = (�x0 (t) ;�y0 (t) ; 0) :

Thus the di¤erential dNp : TpS ! TpS has two eigenvalues 0 and �1.

Example 2.12 Do Example 4 in p. 141. In this example, we have x (u; v) = (u; v; v2 � u2) ; (u; v) 2
R2; and we choose

N (u; v) = N (x (u; v)) =
xu ^ xv
jxu ^ xvj

(u; v)

=

0@ uq
u2 + v2 + 1

4

;
�vq

u2 + v2 + 1
4

;
1

2
q
u2 + v2 + 1

4

1A :

Hence at p = (0; 0; 0) = x (0; 0) we have xu (0; 0) = (1; 0; 0) and xv (0; 0) = (0; 1; 0) and

dNp ((1; 0; 0)) = dNp (xu (0; 0)) =
@

@u

����
u=0

N (x (u; 0)) =
@

@u

����
u=0

N (u; 0)

=
@

@u

����
u=0

0@ uq
u2 + 1

4

; 0;
1

2
q
u2 + 1

4

1A = (2; 0; 0) ;
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and similarly

dNp ((0; 1; 0)) = dNp (xv (0; 0)) =
@

@v

����
v=0

N (x (0; v)) =
@

@v

����
v=0

N (0; v)

=
@

@v

����
v=0

0@0; �vq
v2 + 1

4

;
1

2
q
v2 + 1

4

1A = (0;�2; 0) :

In general, we have

d

dt

����
t=0

N (u (t) ; v (t)) =
d

dt

����
t=0

N (x (u (t) ; v (t)))

= dNp (u
0 (0)xu (0; 0) + v

0 (0)xv (0; 0)) = (2u
0 (0) ;�2v0 (0) ; 0) ;

i.e.,
dNp (u

0 (0) ; v0 (0) ; 0) = (2u0 (0) ;�2v0 (0) ; 0) :
Thus dNp : TpS ! TpS has two eigenvalues 2 and �2 with corresponding eigenvectors xu (0; 0) =
(1; 0; 0) and xv (0; 0) = (0; 1; 0) :

Example 2.13 Do Example 5 in p. 140. In this example, we have x (u; v) = (u; v; u2 + kv2) ; (u; v) 2
R2; where (

xu (u; v) = (1; 0; 2u) ; xv (u; v) = (0; 1; 2kv) ;

xu (u; v) ^ xv (u; v) = (�2u;�2kv; 1) ;
and we choose

N (u; v) = N (x (u; v)) = � xu ^ xv
jxu ^ xvj

(u; v)

=

0@ uq
u2 + k2v2 + 1

4

;
kvq

u2 + k2v2 + 1
4

;
�1

2
q
u2 + k2v2 + 1

4

1A :

Hence at p = (0; 0; 0) we have xu (0; 0) = (1; 0; 0) and xv (0; 0) = (0; 1; 0) and

dNp ((1; 0; 0)) = dNp (xu (0; 0)) =
@

@u

����
u=0

N (u; 0) = (2; 0; 0) ;

and similarly

dNp ((0; 1; 0)) = dNp (xv (0; 0)) =
@

@v

����
v=0

N (0; v) = (0; 2k; 0) :

In general, we have

d

dt

����
t=0

N (u (t) ; v (t)) =
d

dt

����
t=0

N (x (u (t) ; v (t)))

= dNp [u
0 (0)xu (0; 0) + v

0 (0)xv (0; 0)] = (2u
0 (0) ; 2kv0 (0) ; 0) ;

i.e.,
dNp (u

0 (0) ; v0 (0) ; 0) = (2u0 (0) ; 2kv0 (0) ; 0) :

Thus dNp : TpS ! TpS has two eigenvalues 2 and 2k with corresponding eigenvectors xu (0; 0) =
(1; 0; 0) and xv (0; 0) = (0; 1; 0) :

Proposition 2.14 (This is Proposition 1 in p. 142.) For each p 2 S: the di¤erential dNp :
TpS ! TpS of the Gauss map is a self-adjoint linear map.
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Remark 2.15 Read the appendix "self-adjoint linear map and quadratic forms" in p.217-219 by
yourself.

Remark 2.16 Note that with respect to an orthonormal basis fv1; v2g on TpS;
the matrix representation M for dNp : TpS ! TpS is symmetric. If the basis fv1; v2g is not
orthonormal, M may not be symmetric in general. In particular, the matrix for the linear
map dNp : TpS ! TpS with respect to a parametrization basis fxu;xvg may not be symmetric
in general.

Proof. Fix p 2 S and assume x (u; v) : U � R2 ! S � R3 is a parametrization of S around p with
x (q) = p: We already know that dNp : TpS ! TpS is linear and fxu;xvg (evaluated at q 2 U) is a
basis on TpS: To show that it is self-adjoint, we need to check that

hdNp (v) ; wi = hv; dNp(w)i for all v; w 2 TpS: (33)

By linearity, it su¢ ces to check that

hdNp (xu) ;xvi = hxu; dNp(xv)i ; (34)

which is the same as

hNu (u; v) ;xv (u; v)i = hNv (u; v) ;xu (u; v)i at q 2 U; (35)

where N (u; v) means N (x (u; v)) ; where (u; v) 2 U:
Note that for a parametrization x (u; v) we have

hN (u; v) ;xu (u; v)i = hN (u; v) ;xv (u; v)i = 0 for all (u; v) 2 U:

By di¤erentiation with respect to u and v respectively, the above will imply8>><>>:
hNu (u; v) ;xu (u; v)i = �hN (u; v) ;xuu (u; v)i ; where Nu (u; v) = dN (xu (u; v))

hNv (u; v) ;xv (u; v)i = �hN (u; v) ;xvv (u; v)i ; where Nv (u; v) = dN (xv (u; v))

hNu (u; v) ;xv (u; v)i = hNv (u; v) ;xu (u; v)i = �hN (u; v) ;xuv (u; v)i ; xuv (u; v) = xvu (u; v)

for all (u; v) 2 U: In particular, at the point p 2 S; we have the identity (34).
The proof is done. �

Another useful result is the following:

Lemma 2.17 If the di¤erential dNp : TpS ! TpS of the Gauss map satis�es

hdNp (v) ; vi = 0; 8 v 2 TpS; (36)

then dNp (v) = 0 for all v 2 TpS:

Proof. By the assumption, we have

hdNp (v + w) ; v + wi = 0; 8 v; w 2 TpS;

which gives

hdNp (v) ; wi+ hdNp (w) ; vi = 2 hdNp (v) ; wi = 0; 8 v; w 2 TpS:

Hence for �xed v 2 TpS we have hdNp (v) ; wi = 0 for all w 2 TpS: This implies dNp (v) = 0: But
since v 2 TpS can be arbitrary, we conclude dNp (v) = 0 for all v 2 TpS: �

The most important property of a self-adjoint linear map from an inner product vector space
V with dimV = 2 is the following:
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Theorem 2.18 Let V be an inner product vector space with dimV = 2 and assume A : V !
V is a self-adjoint linear map. Then there exists an orthonormal basis fe1; e2g of V such that

Ae1 = �1e1; Ae2 = �2e2 (37)

for some �1; �2 2 R (without loss of generality we may assume �1 � �2), i.e. e1; e2 are eigenvectors
and �1; �2 are eigenvalues of A. Moreover, we have

�1 = max
v2V; jvj=1

hAv; vi ; �2 = min
v2V; jvj=1

hAv; vi : (38)

Proof. See p. 219 of the textbook. We omit it. �

Remark 2.19 (Interesting observation.) Assume A : V ! V is a self-adjoint linear map with
dimV = 2: If �1 > �2 are two eigenvalues of A with corresponding unit eigenvectors v1; v2; then
we must have v1 ? v2 and

�1 = max
v2V; jvj=1

hAv; vi ; �2 = min
v2V; jvj=1

hAv; vi :

To see this, by the identities

(�1 � �2) hv1; v2i = hAv1; v2i � hv1; Av2i = 0; �1 � �2 6= 0;

we have v1 ? v2. Finally, for any v 2 V with jvj = 1 we can express it as

v = �v1 + �v2 for some �; � 2 R; �2 + �2 = 1

and by
hAv; vi = h��1v1 + ��2v2; �v1 + �v2i = �1�

2 + �2�
2;

where
�2 = �2�

2 + �2�
2 � �1�

2 + �2�
2 � �1�

2 + �1�
2 = �1;

we obtain
�1 = max

v2V; jvj=1
hAv; vi ; �2 = min

v2V; jvj=1
hAv; vi : (39)

2.1.3 Second Fundamental Form, Normal Curvature, and Geodesic Curvature.

De�nition 2.20 The quadratic form IIp (v) := �hdNp (v) ; vi : TpS ! R is called the second
fundamental form of S at p: Note that we have

IIp (�v) = IIp (v) for all v 2 TpS (40)

and the linear map dNp : TpS ! TpS is self-adjoint.

De�nition 2.21 Let C be a regular curve in S (with unit normal N) parametrized by � (s) (with
Frenet frame ft (s) ; n (s) ; b (s)g); where s 2 I is arc length parameter. The unit vector

nint (s) = N (s) ^ �0 (s) = N (s) ^ t (s) ; s 2 I (N (s) means N (� (s))) (41)

is called the intrinsic normal of � at s. It is an unit vector lying on T�(s)S and normal to the
curve � at s; i.e.

nint (s) 2 T�(s)S; hnint (s) ; t (s)i = hnint (s) ; �0 (s)i = 0; s 2 I: (42)

That is why we call it the intrinsic normal of �. Now the three vectors

ft (s) ; nint (s) ; N (s)g (43)

form an orthonormal frame at � (s) (it also has the the previous Frenet frame ft (s) ; n (s) ; b (s)g at
� (s)). The tangent plane T�(s)S is spanned by the orthonormal basis ft (s) ; nint (s)g and

t (s) ^ nint (s) = N (s) : (44)
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Remark 2.22 (Important.) Note that nint (s) = N (s) ^ t (s) is always de�ned even if n (s) of �
is unde�ned (i.e., when �00 (s) = 0).

Remark 2.23 (Important.) The projection of the normal vector n (s) 2 R3 of � onto the tan-
gent plane T�(s)S is given by:

projection of n (s) onto T�(s)S

= hn (s) ; t (s)i| {z } t (s) + hn (s) ;nint (s)i| {z }nint (s) = hn (s) ;nint (s)i| {z }nint (s) : (45)

This explains why we call nint (s) the intrinsic normal of � because it is the projection of n (s) onto
T�(s)S:

Remark 2.24 (Important.) To study the geometry of a curve � (s) on S; it is better to use the
frame ft (s) ; nint (s) ; N (s)g (it respects the surface) than the Frenet frame ft (s) ; n (s) ; b (s)g :

For a parametrized curve � (s) 2 S (with normal N); s 2 I; since we have h�00 (s) ; �0 (s)i =
0 everywhere, the vector �00 (s) must lie on the plane spanned by nint (s) and N (s) : Therefore, we
have

�00 (s) = k (s)n (s) = h�00 (s) ; nint (s)i| {z }nint (s) + h�00 (s) ; N (s)i| {z }N (s) ; s 2 I: (46)

De�nition 2.25 In (46), the quantity

h�00 (s) ; nint (s)i (denoted as kg (s) )

is called the geodesic curvature of �; and the quantity

h�00 (s) ; N (s)i (denoted as kn (s) )

is called the normal curvature of �: Therefore, we have the identity

�00 (s) = k (s)n (s) = kg (s)nint (s) + kn (s)N (s) ; s 2 I:

Since we also have j�00 (s)j = k (s) � 0 (the curvature of � (s) as a curve in R3), we conclude the
important identity

k2 (s) = j�00 (s)j2 = k2g (s) + k2n (s) ; s 2 I; (47)

which is the same as
k (s) =

q
k2g (s) + k2n (s); s 2 I:

If �00 (s) 6= 0 (then n (s) is de�ned), we also have8><>:
kg (s) = h�00 (s) ;nint (s)i| {z } = k (s) hn (s) ;nint (s)i ; where nint (s) = N (s) ^ �0 (s)

kn (s) = h�00 (s) ; N (s)i| {z } = k (s) hn (s) ; N (s)i ; s 2 I:
(48)

Finally, if �00 (s) = 0 (then n (s) is unde�ned), we have kg (s) = kg (s) = k (s) = 0:

Remark 2.26 If we change the orientation of S; then both nint (s) and N (s) change sign and so
do kn (s) and kg (s) :
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Assume � (0) = p 2 S: We have the following important identity:

IIp (�
0 (0)) = �hdNp (�0 (0)) ; �0 (0)i = �hN 0 (0) ; �0 (0)i = hN (0) ; �00 (0)i

= hN (0) ; k (0)n (0)i = kn (0) (or denote it as kn (p) ) = normal curvature at p: (49)

We conclude that the value of the second fundamental form IIp (v) at a unit vector v 2 TpS is
equal to the normal curvature of a regular curve � passing through p and tangent to v; i.e.

II�(s) (�
0 (s)) = �hdNp (�0 (s)) ; �0 (s)i = kn (s) ; 8 s 2 I: (50)

Thus the normal curvature of � at p is actually to measure the "geometry" of S; NOT
the curvature of �: It is the component of the tangent vector �dNp (�0 (s)) in the direction
�0 (s) ; s 2 I:
By the identity (49), we have the following important observation:

Lemma 2.27 The normal curvature kn (s) measures the "geometry" of S in R3 (along some
direction v 2 TpS given by �0 (0)) and the geodesic curvature kg (s) measures how � is curving
in S. The geodesic curvature of � is the intrinsic curvature of � in S, i.e., the curvature viewed
by the surface S: However, the curvature k (s) of � 2 S in R3 depends on the "geometry" of S
in R3 and how � is curving in S; i.e. k (s) depends on kn (s) and kg (s) :

Another interesting observation is the following:

Proposition 2.28 (This is Proposition 2 in p. 144.) (Meusnier.) All curves (parametrized
by arc length parameter) lying on S passing through p 2 S and having the same tangent line at
p have the same normal curvature at p:

Remark 2.29 (Important.) By the above Proposition, we can talk about the normal curvature
along a given direction v 2 TpS at p (here both v and �v are regarded as having the same
direction). Moreover, if we change the direction v into �v; we get the same normal curvature.

Proof. Let � (s) and � (s) be two regular curves lying on S with � (0) = � (0) = p 2 S and
�0 (0) = v 2 TpS: By the assumption we have �0 (0) = �v and by (49), the normal curvature of �
at p is

k(�)n (0) = IIp (�
0 (0)) = IIp (v) :

On the other hand, the normal curvature of � at p is

k(�)n (0) = IIp (�
0 (0)) = IIp (�v) = IIp (v) :

The proof is done. �

Example 2.30 (Curve lying on S2:) Let S2 � R3 be the unit sphere in R3 centered at the origin
O = (0; 0; 0) with chosen orientation N (p) = �p (inward) for all p 2 S2: Let � (s) : I ! S2 be a
regular curve lying on S2: We have N (s) = �� (s) and the following three useful identities

h� (s) ; � (s)i � 1; h� (s) ; �0 (s)i � 0; h�0 (s) ; �0 (s)i � 1; 8 s 2 I;

which give

h�00 (s) ; � (s)i = �h�0 (s) ; �0 (s)i � �1; h�00 (s) ; �0 (s)i � 0; 8 s 2 I;

By de�nition
nint (s) = N (s) ^ �0 (s) = �� (s) ^ �0 (s) (51)
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and the frame ft (s) ; nint (s) ; N (s)g is given by

ft (s) ; nint (s) ; N (s)g = f�0 (s) ; �� (s) ^ �0 (s) ; �� (s)g :

The geodesic curvature and normal curvature are given by(
kg (s) = h�00 (s) ;nint (s)i = �h�00 (s) ; � (s) ^ �0 (s)i = � det (� (s) ; �0 (s) ; �00 (s))

kn (s) = h�00 (s) ; N (s)i = h�00 (s) ; �� (s)i = h�0 (s) ; �0 (s)i � 1; s 2 I
(52)

and the vector �00 (s) can be decomposed as

�00 (s) = k (s)n (s) = kg (s)nint (s) + kn (s)N (s)

= � det (� (s) ; �0 (s) ; �00 (s))nint (s) + 1 �N (s) ; s 2 I; (53)

which gives the curvature identity

k (s) =
q
1 + k2g (s) =

q
1 + [det (� (s) ; �0 (s) ; �00 (s))]2; s 2 I: (54)

One can also compute kn (s) by the identity (49) and get

kn (s) = �


dN�(s) (�

0 (s)) ; �0 (s)
�

= �hN 0 (s) ; �0 (s)i = h�0 (s) ; �0 (s)i � 1; 8 s 2 I:

Finally, we note that if we change the orientation of S2 by choosing N (p) = p (outward) for all
p 2 S2; both nint (s) and N (s) change sign and so do kn (s) and kg (s) : In such a case, we have the
nice identity

kg (s) = det (� (s) ; �
0 (s) ; �00 (s)) ; s 2 I: (55)

This example con�rms our observation in Lemma 2.27. The normal curvature kn (s) � 1 describes
the geometry of S2; not the geometry of � (s) :

Example 2.31 (Curve lying on R2:) If � (s) is a curve lying on the plane R2 � R3; then kn (s) �
0 (since the plane has no "curvature") and kg (s) = k (s) ; where k (s) is the signed curvature
of � in the plane. More precisely, we choose N (p) = (0; 0; 1) (upward) for all p 2 R2 and so
dNp (v) = 0 for all p 2 R2 and all v 2 TpS: If we write the unit tangent vector �0 (s) as �0 (s) =
(cos � (s) ; sin � (s) ; 0) ; we get

nint (s) = N (s) ^ �0 (s) = (0; 0; 1) ^ (cos � (s) ; sin � (s) ; 0) = (� sin � (s) ; cos � (s) ; 0)

and then nint (s) is the same as the normal vector n (s) for plane curve � (s) : Hence

kg (s) = h�00 (s) ;nint (s)i = h�00 (s) ; n (s)i = k (s) = signed curvature of � (s) : (56)

There is other way to express the geodesic curvature kg (s). Assume the Frenet frame
ft (s) ; n (s) ; b (s)g of � (s) exists. We have

kg (s) = h�00 (s) ;nint (s)i = k (s) hn (s) ; N (s) ^ t (s)i
= k hN (s) ; t (s) ^ n (s)i = k (s) hb (s) ; N (s)i (57)

and conclude8><>:
kn (s) = h�00 (s) ; N (s)i = k (s) hn (s) ; N (s)i| {z } = normal curvature,
kg (s) = h�00 (s) ;nint (s)i = k (s) hb (s) ; N (s)i| {z } = geodesic curvature. (58)
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De�nition 2.32 Let S � R3 be a regular surface with a chosen orientation N: Given a unit vector
v 2 TpS; the set

S
\

P

is called the normal section of S at p in the direction v: Here P is the plane passing through p
and contains the two vectors N (p) and v 2 TpS:

Since S is a regular surface and near p it is like the graph of a function z = f (x; y) ; (x; y) 2
U (some open set containing (0; 0)) with f (0; 0) = 0; fx (0; 0) = 0; fy (0; 0) = 0; see Exercise 26 in
p. 93), therefore near p the normal section of S at p (along any direction v 2 TpS) is a regular
plane curve C lying on S (here "regular curve" is in the sense of p. 77-78 of the textbook). If we
parametrize it by � (s) ; s 2 (�"; ") ; with � (0) = p; then � (s) is a curve on S (and also on the
plane P ) with �0 (0) = v 2 TpS and either (in the following, the curvature k (s) of � (s) is de�ned
as k (s) = j�00 (s)j � 0)

�00 (0) 6= 0; �00 (0) = k (0)n (0) with k (0) = j�00 (0)j > 0 (59)

or
�00 (0) = 0; with k (0) = j�00 (0)j = 0 and n (0) is unde�ned.

where in (59) the curvature k (0) is de�ned as j�00 (0)j : In the �rst case, n (0) is de�ned with

n (0) = N (0) or n (0) = �N (0) :

In the second case, n (0) is unde�ned.
By the relation kn (0) = h�00 (0) ; N (0)i we have the following possibilities:8>><>>:

kn (0) = k (0) > 0 if n (0) = N (0) ;

kn (0) = �k (0) < 0 if n (0) = �N (0) ;

kn (0) = 0 if �00 (0) = 0 (n (0) is unde�ned)

(60)

In any case, we conclude (note that here, similar to space curves, k (0) is de�ned as j�00 (0)j � 0)

jkn (0)j = k (0) : (61)

In particular, we see that the normal section of S at p has no geodesic curvature.

Remark 2.33 The purpose of the normal section is to �nd a curve � (s) ; � (0) = p; on S such
that its curvature k (0) is equal to the absolute value of the normal curvature kn (0) :

Example 2.34 Let S = S2 centered at (0; 0; 0) with inward normal N and p 2 S2: Each of a
normal section of S at p in the direction v 2 TpS is a great circle with 0 geodesic curvature: We
have kn (0) = 1 for all v 2 TpS:

Example 2.35 (Skip this in class.) Do Example 6 in p. 145. Here we use the fact from Lemma
2.17 to conclude that dNp = 0; p = (0; 0; 0) : To be more precise, for each possible normal section
� (s) of S at p in the direction v we have curvature k (0) = 0 (due to the equation z = y4) and
so kn (0) = 0; which gives

�hdNp (�0 (0)) ; �0 (0)i = kn (0) = 0

for all possible �0 (0) 2 TpS:
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Example 2.36 (Curve lying on cylinder.) Let S be the cylinder in R3 given by�
(x; y; z) 2 R3 : x2 + y2 = 1

	
(62)

and we choose N (x; y; z) = (�x;�y; 0) : For p 2 S; we can look at all possible normal sections
of S at p in all possible directions �v 2 TpS and conclude that, at p 2 S; the maximal normal
curvature is +1 and the minimal normal curvature is 0:

De�nition 2.37 For p 2 S; since the map �dNp : TpS ! TpS is self-adjoint, by Theorem 2.18
there exists orthonormal basis fe1; e2g such that

�dNp (e1) = k1e1; �dNp (e2) = k2e2; (63)

for some k1; k2 2 R (without loss of generality we may assume k1 � k2), where k1; k2 satisfy(
k1 = maxv2TpS; jvj=1 h�dNp (v) ; vi =maximal normal curvature at p;

k2 = minv2TpS; jvj=1 h�dNp (v) ; vi =minimal normal curvature at p:

We call them the principal curvatures of S at p: The directions given by �e1; �e2 are called the
principal directions of S at p: Therefore, along any possible direction �v 2 TpS at p; jvj = 1; the
normal curvature h�dNp (�v) ;�vi satis�es (now we denote k1; k2 at p as k1 (p) and k2 (p))

k2 (p) � h�dNp (�v) ;�vi � k1 (p) ; 8 unit vector v 2 TpS;

i.e. h�dNp (�v) ;�vi lies on the interval [k2 (p) ; k1 (p)] :We call it the normal curvature interval
at p 2 S:

Remark 2.38 (Be careful.) In the above de�nition, we assume fe1; e2g to be orthonormal even if
k1 = k2: So by default, principal directions are perpendicular to each other. However, note that
when k1 = k2 (denote it as k), we have �dNp = kI and any vector v 6= 0 2 TpS is an eigenvector
and we usually say that the direction given by v 6= 0 2 TpS is a principal direction. This may be a
little bit confusing sometimes !!!

Remark 2.39 Summary: maximal and minimal normal curvatures are eigenvalues and principal
directions are eigenvector directions, for the linear map �dN:

Lemma 2.40 For each p 2 S and each number � 2 [k2 (p) ; k1 (p)] ; there is some direction �v0 2
TpS such that

h�dNp (�v0) ; �v0i = �:

Remark 2.41 We will see in Section 3.3 that if we choose k1 (p) � k2 (p) for all p 2 S; then
k1 (p) and k2 (p) are continuous functions on S:

Proof. This is obvious since the function h�dNp (�v) ;�vi : v (unit vectors) 2 TpS ! R is
continuous. Therefore, its image is a connected closed interval equal to [k2 (p) ; k1 (p)]. The result
follows due to the intermediate value theorem. �

Example 2.42 Let S = xy-plane in R3: Then at any p 2 S; all directions are principal directions
and all normal curvatures at p are 0:

Example 2.43 Let S = S2 in R3 with N (p) = �p (inward) on S2: Then at any p 2 S all directions
are principal directions and all normal curvatures at p are 1:
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Example 2.44 Let S be the cylinder (62) in R3 with inward normal. At any p 2 S; the directions
parallel to the z-axis and the directions perpendicular to the z-axis are principal directions. The
principal curvatures of S at p are 0 and 1:

Example 2.45 Let S be the hyperbolic paraboloid in Example 4 in p. 141. It has global parametriza-
tion x (u; v) = (u; v; v2 � u2) ; (u; v) 2 R2; and we choose N (u; v) = N (x (u; v)) = xu^xv

jxu^xv j (u; v) : At
p = (0; 0; 0) = x (0; 0) we have xu (0; 0) = (1; 0; 0) and xv (0; 0) = (0; 1; 0) ; hence TpS = xy-plane.
We note that (see the computation in Example 2.12)

�dNp ((1; 0; 0)) = (�2; 0; 0) = �2 (1; 0; 0) ; �dNp ((0; 1; 0)) = (0; 2; 0) = 2 (0; 1; 0) :

Therefore, �dNp has two eigenvalues �2 and 2 and corresponding eigenvectors (1; 0; 0) and (0; 1; 0) : The
principal curvatures of S at p are �2 and 2 : The two directions along the x-axis and y-axis are
principal directions.

2.1.4 Line of Curvature.

From now on, we always assume that S � R3 is a regular surface with a chosen orientation N:

De�nition 2.46 Let C � S be a connected regular curve with the property that the tangent line
L at any p 2 C is a principal direction of S at p: Then we say C is a line of curvature on S:

Remark 2.47 Note that C is in general a curve on S, not a straight line on S (i.e. do not be
misled by the name): On S2; any curve � (s) 2 S2 is a line of curvature. Similarly, on R2; any curve
� (s) 2 R2 is a line of curvature.

Proposition 2.48 (This is Proposition 3 in p. 147.) (Olinde Rodrigues.) A necessary and
su¢ ciently for a connected regular C on S to be a line of curvature is that

N 0 (t) = � (t)�0 (t) (same as �N 0 (t) = �� (t)�0 (t) ) (64)

for any parametrization � (t) of C and any t in the domain of �; where N (t) = N (�(t)) and � (t) is
a di¤erentiable function of t: In this case, �� (t) is the principal curvature of S at � (t) along
�0 (t) :

Remark 2.49 (Important.) If a curve � (s) 2 S; s 2 I; is a line of curvature, then each
�0 (s) is an eigenvector of dN�(s) and by

�hdNp (�0 (s)) ; �0 (s)i = �hN 0 (s) ; �0 (s)i = hN (s) ; �00 (s)i = kn (s) = normal curvature at � (s) ;
(65)

we see that
kn (s) = k1 (s) or k2 (s) ; 8 s 2 I: (66)

Proof. For any parametrization � (t) of C; if it is a line of curvature, then �0 (t) is a principal
direction and we have

N 0 (t) = dN (�0 (t)) = � (t)�0 (t)

for some function � (t) : The function � (t) is di¤erentiable due to the identity

� (t) =
hN 0 (t) ; �0 (t)i
h�0 (t) ; �0 (t)i ; h�0 (t) ; �0 (t)i > 0 for all t 2 domain of �:

Conversely, if we have the identity (64) for all t; it means that the vector �0 (t) 6= 0 is an eigenvector
with eigenvalue �� (t) for the map �dN�(t): Hence the curve C is a line of curvature. �
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2.1.5 Euler Formula, Gauss Curvature, Mean Curvature, and Umbilical Point.

Let S � R3 be a regular surface with an orientation N: Let fe1; e2g be an orthonormal basis on
TpS (eigenvectors) corresponding to the two principal curvatures k1 (p) � k2 (p) : We also assume
that they have positive orientation, i.e. they satisfy e1 ^ e2 = N (p) on TpS: If k1 (p) > k2 (p) ; such
a basis on TpS is unique (modulo the choice f�e1;�e2g): For any unit vector v 2 TpS; one can
express it as

v = (cos �) e1 + (sin �) e2; jvj = 1;
where � is the angle from e1 to v in the orientation of TpS (which means e1^v = N (p)). The normal
curvature along v is now given by

kn (p) = IIp (v) = �hdNp (v) ; vi
= �hdNp ((cos �) e1 + (sin �) e2) ; (cos �) e1 + (sin �) e2i
= h(k1 cos �) e1 + (k2 sin �) e2; (cos �) e1 + (sin �) e2i = k1 (p) cos

2 � + k2 (p) sin
2 �: (67)

The formula in (67) is known as the Euler formula, which is the expression of the second funda-
mental form IIp (�) on TpS with respect to the basis fe1; e2g :

Remark 2.50 In Euler formula, it su¢ ces to focus on � 2 [0; �) due to IIp (�v) = IIp (v) :

Remark 2.51 (Interesting observation.) The formula (67) automatically implies the inequality

k2 (p) � kn (p) � k1 (p) ; 8 v 2 TpS; jvj = 1

due to the linear combination

kn (p) = �k1 + (1� �) k2; 0 � � = cos2 � � 1: (68)

De�nition 2.52 Let k1 � k2 be the two principal curvatures of S at p: The two numbers

K := k1k2; H :=
k1 + k2
2

(69)

are called the Gauss curvature of S at p and the mean curvature of S at p respectively. We
note that

K = det (�dNp) ; H =
1

2
Tr (�dNp)

�
=
1

2
Trace (�dNp)

�
: (70)

Remark 2.53 If we change the orientation of S (i.e. replace N by �N), each principal curvature
changes sign and so the mean curvature H changes its sign. However, the Gauss curvature K is
unchanged (since dimTpS = 2).

De�nition 2.54 A point p 2 S is called

1. Elliptic if det (dNp) > 0 (i.e. k1 (p) and k2 (p) have the same sign):

2. Hyperbolic if det (dNp) < 0 (i.e. k1 (p) and k2 (p) have opposite sign):

3. Parabolic if det (dNp) = 0; but dNp 6= 0: (i.e. either k1 (p) or k2 (p) is zero, but not both):

4. Planar if dNp = 0 (i.e. both k1 (p) and k2 (p) are zero):

Remark 2.55 Note that the above de�nition does not depend on the choice of the orientation N on
S:
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Example 2.56 (See Example 5 in p. 142.) For the graphic surface S : z = x2+ky2 (k > 0 is a
constant) with upward normal, the point p = (0; 0; 0) 2 S is an elliptic point with k1 = 2; k2 =
2k and all normal curvatures have the same sign. All curves � (s) 2 S; � (0) = p; passing through
p are bending towards the same side of TpS due to the constant sign of h�00 (0) ; N (p)i.

Example 2.57 For the graphic surface S : z = y2 � x2 with upward normal; the point p =
(0; 0; 0) 2 S is a hyperbolic point with k1 = 2; k2 = �2. There are curves passing through
p bending towards one side of TpS and there are curves passing through p bending towards the other
side of TpS.

Example 2.58 Let S be the cylinder in Example 3 in p. 141 with inward normal. At each
p 2 S; we have k1 = 1; k2 = 0: Therefore, all points on S are parabolic points.

De�nition 2.59 Let k1 � k2 be the two principal curvatures of S at p: If we have k1 = k2; then
the point p 2 S is called an umbilical point. In particular, any planar point is an umbilical point.

Example 2.60 On S2; any point p 2 S2 is an umbilical point. Similarly, on R2; any point p 2 R2 is
an umbilical point.

We have the following interesting result related to the above example:

Proposition 2.61 (This is Proposition 4 in p. 149.) Let S � R3 be a connected surface and
all points on S are umbilical. Then S is contained either in a sphere (not necessarily unit sphere)
or in a plane.

Proof. Let p 2 S and x (u; v) : U � R2 ! S a parametrization near p and we take U to be
connected open set in R2: For each q 2 V = x (U) and any vector w = axu + bxv 2 TqS; we have

dNq (w) = � (q)w; 8 w 2 TqS; q 2 V; (71)

where � (q) : V ! R is a di¤erentiable function on V (you can see this from (72) below): Since
w = axu + bxv; we have

aNu + bNv = � (q) (axu + bxv) :

Since w 2 TqS is arbitrary, we have (pick a = 1; b = 0 and a = 0; b = 1 respectively)

Nu = � (q)xu; Nv = � (q)xv; � (q) =
hNu;xui
E (u; v)

=
hNu;xui
G (u; v)

; (72)

which gives (look at Nuv �Nvu = 0)

�v (q)xu � �u (q)xv = 0; 8 q 2 V

and so
�v (q) = �u (q) = 0; 8 q 2 V: (73)

The above implies that � (q) is a constant function on V since V � S is connected:

Case 1: � (q) � 0 on V:

In this case, we have Nu = Nv � 0 on V; which implies N (u; v) = const: N0 on V: In particular
we get

@

@u
hx (u; v) ; N0i =

@

@v
hx (u; v) ; N0i = 0 on (u; v) 2 U:

It means that all points x (u; v) ; (u; v) 2 U; lie on a plane P perpendicular to N0:
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Case 2: � (q) � � 6= 0 on V:

In this case, we have
Nu = �xu; Nv = �xv; 8 (u; v) 2 U;

which gives �
N

�
� x

�
u

=

�
N

�
� x

�
v

= 0; 8 (u; v) 2 U;

i.e.

x (u; v)� N (u; v)

�
= const: vector v0 on U:

We conclude
jx (u; v)� v0j2 =

1

�2
on U

and know that all points of V are contained in a sphere with radius 1= j�j centered at v0:
Finally, for any p; q 2 S; since S is connected, there exists a continuous path � (t) 2 S; t 2

[0; 1] ; such that � (0) = p; � (1) = q: By compactness of the set � ([0; 1]) ; there exists �nitely many
connected coordinate neighborhoods V1; :::; Vk satisfying

� ([0; 1]) �
k[
i=1

Vi

and without loss of generality we may assume that

V1
\

V2 (open set) 6= ?; V2
\

V3 (open set) 6= ?; :::; Vk�1
\

Vk (open set) 6= ?:

and moreover, each coordinate neighborhoods Vi is lying either on a plane or on a sphere with radius
ri > 0:
If V1 lies on a plane, then V2 also lies on the same plane. This is because if V2 lies on a

sphere or a di¤erent plane, then it is impossible for V1
T
V2 to be an open set on the surface S: By

induction, all Vi; i = 3; 4; :::; k; will all lie on the same plane. Hence p and q lie on the same
plane. By �xing p 2 S and letting q 2 S be arbitrary, we see that the whole surface S lies on some
plane.
Similarly, if V1 lies on a sphere with radius r > 0; the same argument implies that all Vi; 1 �

i � k; lies on the same sphere with radius r > 0: Hence p; q lie on the same sphere with radius
r > 0: By �xing p 2 S and letting q 2 S be arbitrary, we see that the whole surface S lies on a
sphere with radius r > 0: The proof is done. �

2.1.6 Asymptotic Direction, Asymptotic Curve, Dupin Indicatrix, and Conjugate Di-
rections.

De�nition 2.62 Let p 2 S: A direction v 2 TpS is called an asymptotic direction at p if the
normal curvature of S at p along v is 0: A connected regular curve C � S is called an asymptotic
curve if for each p 2 C the tangent line L at p 2 C is along an asymptotic direction.

Remark 2.63 (Comparison.) If � (s) 2 S; s 2 I; is a regular curve on S; we have:

1. If normal curvature kn (s) at � (s) along �0 (s) is either �k1 (s) or �k2 (s) for all s 2 I; then � (s)
is a line of curvature.

2. If normal curvature kn (s) at � (s) along �0 (s) is 0 everywhere, then � (s) is an asymptotic
curve.

Lemma 2.64 We have the following:
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1. If p 2 S is an elliptic point (k1 (p) k2 (p) > 0), there is no asymptotic direction at p:

2. If p 2 S is a hyperbolic point (k1 (p) k2 (p) < 0), we have exactly two asymptotic direc-
tions at p: Moreover, if k1 (p)+k2 (p) = 0 (i.e. mean curvature is 0), these two directions are
orthogonal.

3. If p 2 S is a parabolic point (k1 (p) k2 (p) = 0; but one of them is nonzero), there is exactly
one asymptotic direction at p:

Proof. (1) is obvious.

For (2), let fe1; e2g an orthonormal basis on TpS (eigenvectors of �dNp) corresponding to
the two principal curvatures k1 (p) � k2 (p) : For unit vector v 2 TpS with v = (cos �) e1 +
(sin �) e2; the normal curvature kn (p) along v is given by

kn (p) = k1 (p) cos
2 � + k2 (p) sin

2 � = [k1 (p)� k2 (p)] cos
2 � + k2 (p) ; � 2 [0; �); (74)

where now k1 (p) > 0 and k2 (p) < 0: We want to �nd � 2 [0; �) such that kn (p) = 0; i.e. want to
solve the equation for � 2 [0; �) :

cos2 � = � k2 (p)

k1 (p)� k2 (p)
2 (0; 1) ;

which gives

cos � = �

s
� k2 (p)

k1 (p)� k2 (p)
: (75)

The equation has exactly two solutions �0 2 (0; �=2) and � � �0 2 (�=2; �) : Therefore, we have
exactly two asymptotic directions at p (draw a picture for this).
If k1 (p) + k2 (p) = 0; then equation (75) becomes cos � = �1=

p
2 and the two solutions are

�0 = �=4; 3�=4: These two directions are orthogonal.

For (3), if k1 (p) > 0; k2 (p) = 0; then equation kn (p) = 0 becomes

k1 (p) cos
2 � = 0; � 2 [0; �):

The only solution is � = �=2 and there is exactly one asymptotic direction at p: On the other hand,
if If k1 (p) = 0; k2 (p) < 0; then equation kn (p) = 0 becomes

k2 (p) sin
2 � = 0; � 2 [0; �):

The only solution is � = 0 and there is exactly one asymptotic direction at p: �

De�nition 2.65 Let p 2 S: The Dupin indicatrix at p is the set of vectors on TpS given by

fw 2 TpS : IIp (w) = �hdNp (w) ; wi = �1g : (76)

Let fe1; e2g an orthonormal basis on TpS (eigenvectors of �dNp) corresponding to the two
principal curvatures k1 (p) � k2 (p) : For w 2 TpS; we can express it as

w = xe1 + ye2 = (r cos �) e1 + (r sin �) e2; r = jwj

and obtain
IIp (w) = �hdNp (xe1 + ye2) ; xe1 + ye2i = k1x

2 + k2y
2
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or

IIp (w) = �hdNp ((r cos �) e1 + (r sin �) e2) ; (r cos �) e1 + (r sin �) e2i

= r2
�
k1 cos

2 � + k2 sin
2 �
�
= r2IIp (v) ; where v =

w

r
:

Therefore, the Dupin indicatrix is described by

k1x
2 + k2y

2 = �1; (77)

which is a symmetric quadratic curve on the plane TpS:
Similar to Lemma 2.64, we have:

Lemma 2.66 We have the following:

1. If p 2 S is an elliptic point (k1 (p) k2 (p) > 0), the Dupin indicatrix is an ellipse on
TpS: Moreover, if k1 (p) = k2 (p) ; it is a circle.

2. If p 2 S is a hyperbolic point (k1 (p) k2 (p) < 0), the Dupin indicatrix is a hyperbola and
its two asymptotes are pointing to the two asymptotic directions at p.

3. If p 2 S is a parabolic point (k1 (p) k2 (p) = 0; but one of them is nonzero), the Dupin
indicatrix is a pair of parallel lines pointing to the asymptotic direction at p.

Proof. (1) is obvious.

For (2), it su¢ ces to verify the last statement. The hyperbola satis�es the equation

k1 (p)x
2 + k2 (p) y

2 = �1; k1 (p) > 0; k2 (p) < 0:

We can decompose it as�p
k1 (p)x�

p
�k2 (p)y

��p
k1 (p)x+

p
�k2 (p)y

�
= �1

and its two asymptotes are the two lines L1; L2 given by

L1 :
p
k1 (p)x�

p
�k2 (p)y = 0; L2 :

p
k1 (p)x+

p
�k2 (p)y = 0:

The line L1 intersects the unit circle on TpS at (cos �0; sin �0) on the �rst quadrant (+;+) at

cos �0 =

s
� k2 (p)

k1 (p)� k2 (p)
; sin �0 =

s
k1 (p)

k1 (p)� k2 (p)
(78)

and the line L2 intersects the unit circle on TpS at (cos �0; sin �0) on the second quadrant (�;+) at

cos �0 = �

s
� k2 (p)

k1 (p)� k2 (p)
; sin �0 =

s
k1 (p)

k1 (p)� k2 (p)
: (79)

The above two directions are asymptotic directions due to (75).

For (3) ; we may assume k1 (p) > 0; k2 (p) = 0: Now the Dupin indicatrix becomes

k1 (p)x
2 = �1;

which is a pair of two parallel lines x = �1=
p
k1 (p) pointing in the y-axis direction (the direction

with � = �=2; which is the only asymptotic direction at p). �
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De�nition 2.67 Let p 2 S and w1; w2 2 TpS are two nonzero vectors (may or may not be unit
vectors). If we have

hdNp (w1) ; w2i = hw1; dNp (w2)i = 0; (80)

we say these two vectors are conjugate. The two directions r1; r2 given by w1 (or �w1) and w2 (or
�w2) are called conjugate directions.

Remark 2.68 (Be careful.) Be careful that the de�nition (80) implies dNp (w1) ? w2 and dNp (w2) ?
w1: However, in general, it does not imply that dNp (w1) = �1w1 and dNp (w2) = �2w2 for some
constants �1; �2 (unless w1 ? w2). The vector dNp (w1) may have component in w2 direction and
the vector dNp (w2) may have component in w1 direction.

Example 2.69 Assume at p 2 S we have k1 6= k2 and both are not 0: Then two principal
directions are conjugate.

Example 2.70 If k1 6= k2 but one them is 0; say k1 > 0 (with unit eigenvector e1); k2 = 0 (with unit
eigenvector e2; e1 ? e2); then for any nonzero vector w 2 TpS; the two vectors w; e2 2 TpS are
conjugate due to

hdNp (w) ; e2i = hw; dNp (e2)i = hw; 0i = 0: (81)

Example 2.71 An asymptotic direction (normal curvature zero direction) is conjugate to itself.

Example 2.72 If k1 = k2 6= 0 (denote the common value as �; � 6= 0), any pair of orthogonal
directions are conjugate. This is because �dNp = �I and

hdNp (w1) ; w2i = h��w1; w2i = �� hw1; w2i = 0

if and only if hw1; w2i = 0: If k1 = k2 = 0; any pair of directions are conjugate.

Lemma 2.73 (Conjugate directions in terms of polar coordinates.) Let p 2 S and fe1; e2g
is the orthonormal basis at TpS satisfying

e1 ^ e2 = N (p) ; �dNp (e1) = k1e1; �dNp (e2) = k2e2; (82)

where k1 6= k2 are principal curvatures. Let r1; r2 be two directions and �; ' are the angles from
e1 to r1; r2 respectively in the orientation of TpS: Then r1; r2 are conjugate if and only if

k1 cos � cos'+ k2 sin � sin' = 0: (83)

Remark 2.74 If we replace � by � + � (or ' by '+ �), the identity (83) still holds.

Proof. By the assumption, r1; r2 are conjugate if and only if the two vectors

w1 = (cos �) e1 + (sin �) e2; w2 = (cos') e1 + (sin') e2 (84)

are conjugate. We compute

hdNp (w1) ; w2i
= hdNp ((cos �) e1 + (sin �) e2) ; (cos') e1 + (sin') e2i
= �k1 cos � cos'� k2 sin � sin'

and so hdNp (w1) ; w2i = 0 if and only if (83) holds. �
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Lemma 2.75 (Conjugate directions in terms of Euclidean coordinates.) Same assumption
as in Lemma 2.73 with k1 6= k2. Assume the direction r1 is given by some nonzero vector w1 =
xe1+ye2 2 TpS and the direction r2 is given by another nonzero vector w2 = ~xe1+~ye2 2 TpS: Then
r1; r2 are conjugate if and only if

k1x~x+ k2y~y = 0: (85)

In particular, for any nonzero vector w1 = xe1 + ye2 2 TpS; if

w2 = (�k2y) e1 + (k1x) e2 2 TpS (86)

is a nonzero vector, then w1 and w2 are conjugate.

Remark 2.76 The above lemma is still correct if k1 = k2 6= 0: In case k1 > 0; k2 = 0; (85)
becomes k1x~x = 0: In such a case, any nonzero (0; y) and any nonzero (~x; ~y) are conjugate. See
Example 2.69.

Proof. We can write w1 =
p
x2 + y2 (cos �; sin �) and w2 =

p
~x2 + ~y2 (cos'; sin') : By (83), they

are conjugate if and only if
k1 cos � cos'+ k2 sin � sin' = 0;

which is the same as

k1

�p
x2 + y2 cos �

��p
~x2 + ~y2 cos'

�
+ k2

�p
x2 + y2 sin �

��p
~x2 + ~y2 sin'

�
= 0;

i.e. if and only if (85) holds. In particular, the two nonzero vectors (x; y) ; (�k2y; k1x) are conjugate.�

Example 2.77 (Using Dupin indicatrix to �nd conjugate directions.) Using the property
that any two nonzero vectors w1 = (x; y) ; w2 = (�k2y; k1x) are conjugate to each other, one can
explain the picture in the textbook, p. 152 for the elliptic case. The construction is also valid for the
hyperbolic case. Draw two pictures on blackboard (one for elliptic case and one for hyperbolic
case).

2.1.7 Conclusion for Conjugate Directions.

Let p 2 S and fe1; e2g is the orthonormal basis at TpS satisfying

e1 ^ e2 = N (p) ; �dNp (e1) = k1e1; �dNp (e2) = k2e2; (87)

where k1; k2 are principal curvatures. Let r1 be a direction on TpS given by w1 = (cos �) e1 +
(sin �) e2. By Lemma 2.73, we can conclude the following:

(1) : Assume k1 6= k2 and k1k2 > 0 (i.e. p 2 S is an elliptic point) (without loss of generality,
we may assume k1 > 0 and k2 > 0). In such a case the vector (k1 cos �; k2 sin �) 6= (0; 0) is nonzero
and there is an unique conjugate direction r2 given by (note that �w2 also gives rise to the
same direction)

w2 = (cos') e1 + (sin') e2;

where the direction (cos'; sin') is perpendicular to the direction (k1 cos �; k2 sin �) ; i.e.

k1 cos � cos'+ k2 sin � sin' = 0 (same as
�
k1 cos �
k2 sin �

�
�
�
cos'
sin'

�
= 0): (88)

Moreover, the direction r2 is di¤erent from r1 (due to k1 cos2 � + k2 sin
2 � > 0): In particular, if

r1 is the principal direction e1 (same as � = 0), then the identity (88) is the same as cos' = 0 (i.e.
' = �

2
) and we have r2 is the principal direction e2: Similarly, if r1 is the principal direction

e2, then r2 is the principal direction e1:
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(2) : If k1 6= k2 and k1k2 < 0 (i.e. p 2 S is a hyperbolic point), then we have the same conclusion
as in (1) ; but the direction r2 may be the same as r1 if we have

k1 cos
2 � + k2 sin

2 � = 0 (note that k1 > 0; k2 < 0),

which means that r1 is an asymptotic direction. Therefore, as long as r1 is not an asymptotic
direction, the conjugate direction r2 is unique and di¤erent from r1. But if r1 is an asymp-
totic direction, the only direction conjugate to r1 is r1 itself. Finally, if r1 is the principal
direction e1 (e2); then r2 is the principal direction e2 (e1).

(3) : If k1 6= k2 and k1k2 = 0 (i.e. p 2 S is a parabolic point) (without loss of generality, we
may assume k1 > 0; k2 = 0), then the identity (88) is the same as cos � cos' = 0. Therefore, if
� = �

2
(same as w1 = e2; eigenvector for eigenvalue k2 = 0), then any nonzero vector w2 2 TpS is

conjugate to r1: But if � 6= �
2
(same as w1 6= e2), then we have cos' = 0 and the only direction

conjugate to r1 is the eigenvector direction e2:
Therefore, for a parabolic point, we have the property: if two nonzero vectors w1; w2 2

TpS are conjugate to each other, then one of them must be pointing to the eigenvector
direction e2; where k2 = 0:

(4) : If k1 = k2 = � 6= 0; then we have �dNp = �I; � 6= 0; and for any nonzero vectors
w1; w2 2 TpS; we have

hdNp (w1) ; w2i = h��w1; w2i = �� hw1; w2i :

Therefore, w1; w2 2 TpS are conjugate if and only if hw1; w2i = 0:

(5) : If k1 = k2 = � = 0; then �dNp = 0 and any pair of directions are conjugate.

2.1.8 Three Interesting Identities Related to Gauss Curvature and Mean Curvature.

Lemma 2.78 Let p 2 S and fe1; e2g be the orthonormal basis at TpS satisfying

e1 ^ e2 = N (p) ; �dNp (e1) = k1e1; �dNp (e2) = k2e2; (89)

where k1; k2 are principal curvatures. We have:

1. If H (p) = 0 with k1 (p) > 0; k2 (p) < 0; we have the identity

hdNp (w1) ; dNp (w2)i = �K (p) hw1; w2i ; 8 w1; w2 2 Tp (S) ; (90)

where K (p) < 0 is the Gauss curvature at p: In particular, if we assume H � 0 on S with
k1 > 0; k2 < 0 everywhere, then the angle of two intersecting curves on S and the angle
of their spherical images are equal up to a sign (in such a case, for any p 2 S; dNp is a
conformal map because it preserves angles). �

2. We have
dNp (w1) ^ dNp (w2) = K (p) (w1 ^ w2) ; 8 w1; w2 2 Tp (S) : (91)

3. We have

dNp (w1) ^ w2 + w1 ^ dNp (w2) = �2H (p) (w1 ^ w2) ; 8 w1; w2 2 Tp (S) : (92)
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Remark 2.79 In the case when we have w1 ^ w2 = N; then (91) and (92) give the following

K (p) = hdNp (w1) ^ dNp (w2) ; N (p)i (93)

and
�2H (p) = hdNp (w1) ^ w2 + w1 ^ dNp (w2) ; N (p)i : (94)

Proof. We prove (2) and (3) �rst. For any w1; w2 2 Tp (S) ; we can express them as

w1 = a1e1 + a2e2; w2 = b1e1 + b2e2 2 Tp (S)

for some constants a1; a2; b1; b2: We have

w1 ^ w2 = (a1b2 � a2b1) e1 ^ e2
and

dNp (w1) ^ dNp (w2)
= (�a1k1e1 � a2k2e2) ^ (�b1k1e1 � b2k2e2)

= (a1k1e1 + a2k2e2) ^ (b1k1e1 + b2k2e2) = (a1k1b2k2 � a2k2b1k1) e1 ^ e2
= k1k2 (a1b2 � a2b1) e1 ^ e2 = K (p) (w1 ^ w2) ; 8 w1; w2 2 Tp (S) :

We also have

dNp (w1) ^ w2 + w1 ^ dNp (w2)
= (�a1k1e1 � a2k2e2) ^ (b1e1 + b2e2) + (a1e1 + a2e2) ^ (�b1k1e1 � b2k2e2)

= [�a1k1b2 + a2k2b1 + a1 (�b2k2) + a2b1k1] e1 ^ e2
= [a1b2 (�k1 � k2) + a2b1 (k1 + k2)] e1 ^ e2 = �2H (p) (a1b2 � a2b1) e1 ^ e2
= �2H (p) (w1 ^ w2) ; 8 w1; w2 2 Tp (S) :

For (1) ; we �rst have

K (p) = k1 (p) k2 (p) = �k21 (p) = �k22 (p)

and

hdNp (w1) ; dNp (w2)i = h�a1k1e1 � a2k2e2; �b1k1e1 � b2k2e2i
= a1b1k

2
1 + a2b2k

2
2 = � (a1b1 + a2b2)K (p) = �K (p) hw1; w2i ; 8 w1; w2 2 Tp (S) ;

where K (p) < 0: In particular, we have

jdNp (w)j2 = �K (p) jwj2 (same as jdNp (w)j =
p
�K (p) jwj ); 8 w 2 TpS: (95)

If we assume H � 0 on S with k1 > 0; k2 < 0 everywhere, then for any two regular curves
� (s) ; � (s) on S with intersection point at � (0) = � (0) = q 2 S with angle �; we have

hdNq (�0 (0)) ; dNq (�0 (0))i = �K (q) h�0 (0) ; �0 (0)i ;

where we know that

dNq (�
0 (0)) =

d

ds

����
s=0

N (� (s)) ; dNq (�
0 (0)) =

d

ds

����
s=0

N (� (s)) :

The intersection angle �N of the two spherical image curves N (� (s)) ; N (� (s)) at N (q) satis�es

cos �N =
hdNq (�0 (0)) ; dNq (�0 (0))i
jdNq (�0 (0))j jdNq (�0 (0))j

=
�K (q) h�0 (0) ; �0 (0)ip

�K (q) j�0 (0)j
p
�K (q) j�0 (0)j

=
h�0 (0) ; �0 (0)i
j�0 (0)j j�0 (0)j = cos �;

which implies �N = ��: The proof is done. �
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2.1.9 The Geodesic Torsion for a Regular Curve on a Regular Surface S � R3 (this is
Exercise 19 in p. 155).

Let � (s) ; s 2 I; be a regular curve on S: In the following, we shall compare the Frenet frame
equations for the moving frame ft (s) ; n (s) ; b (s)g along � (s) 2 R3 and the di¤erential equations
for the surface moving frame ft (s) ; nint (s) ; N (s)g along � (s) 2 S: Recall that nint (s) is the
intrinsic normal of � at s; de�ned as

nint (s) = N (s) ^ t (s) = N (s) ^ �0 (s) ; s 2 I (N (s) means N (� (s))) : (96)

By (46), we have

t0 (s) = �00 (s)| {z } = k (s)n (s) = h�00 (s) ; nint (s)i| {z }nint (s) + h�00 (s) ; N (s)i| {z }N (s)
= kg (s)nint (s) + kn (s)N (s)| {z }; s 2 I; (97)

where kn (s) is the geodesic curvature of � and kn (s) is the normal curvature of �:
To continue, we would like to express ft (s) ; n (s) ; b (s)g in terms of ft (s) ; nint (s) ; N (s)g : The

following lemma is straightforward.

Lemma 2.80 We have the following expression:8><>:
n (s) = hn (s) ; nint (s)i| {z }nint (s) + hn (s) ; N (s)i| {z }N (s)
b (s) = �hn (s) ; N (s)i| {z }nint (s) + hn (s) ;nint (s)i| {z }N (s) : (98)

In terms of formal matrix notation we have0@ t (s)
n (s)
b (s)

1A =

0@ 1 0 0
0 hn (s) ; nint (s)i hn (s) ; N (s)i
0 �hn (s) ; N (s)i hn (s) ; nint (s)i

1A0@ t (s)
nint (s)
N (s)

1A ; s 2 I: (99)

where the coe¢ cient matrix is orthogonal.

Proof. The �rst identity in (98) is clear. For the second identity in (98), we have

b (s) = t (s) ^ n (s) = t (s) ^
�
hn (s) ;nint (s)i| {z }nint (s) + hn (s) ; N (s)i| {z }N (s)

�
= hn (s) ;nint (s)i| {z }N (s)� hn (s) ; N (s)i| {z }nint (s) :

The proof is done. �

Next, we compute N 0 (s) (note that N (s) means N (� (s))) and can express it as

N 0 (s) = A (s) t (s) +Q (s)nint (s) + C (s)N (s) ; s 2 I

for some coe¢ cients A (s) ; Q (s) ; C (s) and we see that C (s) � 0 (since hN 0 (s) ; N (s)i = 0 for all
s) and

A (s) = hN 0 (s) ; t (s)i = hN 0 (s) ; �0 (s)i = �hN (s) ; �00 (s)i = �kn (s) ;
which is the normal curvature. Hence we conclude (we will give Q (s) a name later on)

N 0 (s) = �kn (s) t (s) +Q (s)nint (s) ; s 2 I: (100)
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Finally, we compute

n0int (s) =
d

ds
[N (s) ^ �0 (s)] = N 0 (s) ^ �0 (s) +N (s) ^ �00 (s)

= [�kn (s) t (s) +Q (s)nint (s)] ^ t (s) +N (s) ^ [kg (s)nint (s) + kn (s)N (s)]

= �kg (s) t (s)�Q (s)N (s) ; s 2 I:

We de�ne the following:

De�nition 2.81 (See textbook p. 155.) The quantity Q (s) is called the geodesic torsion of
� at � (s) and denote it as �g (s) : Note that we can also express it as

�g (s) = hN 0 (s) ; nint (s)i = �hN (s) ; n0int (s)i ; s 2 I: (101)

Remark 2.82 (Important.) The geodesic torsion �g (s) is a new quantity. It cannot be ex-
pressed in terms of kn (s) and kg (s) : Note that if we do the following:

�g (s) = hN 0 (s) ; nint (s)i = �hN (s) ; n0int (s)i = �
�
N (s) ;

d

ds
(N (s) ^ t (s))

�
= �hN (s) ; N 0 (s) ^ t (s) +N (s) ^ t0 (s)i = �hN (s) ; N 0 (s) ^ t (s)i
= �hN (s) ; [�kn (s) t (s) + �g (s)nint (s)] ^ t (s)i = �hN (s) ; �g (s)nint (s) ^ t (s)i = �g (s) ;

we get nothing useful at all.

We can summarize the following:

Lemma 2.83 (Moving frame equations on S:) The surface moving frame ft (s) ; nint (s) ; N (s)g
along � (s) 2 S (with normal N (s)) satis�es the equation0@ t0 (s)

n0int (s)
N 0 (s)

1A =

0@ 0 kg (s) kn (s)
�kg (s) 0 ��g (s)
�kn (s) �g (s) 0

1A0@ t (s)
nint (s)
N (s)

1A ; s 2 I: (102)

Remark 2.84 Compare with the Frenet frame equations for � (s) 2 R3; given by0@ t0 (s)
n0 (s)
b0 (s)

1A =

0@ 0 k (s) 0
�k (s) 0 �� (s)
0 � (s) 0

1A0@ t (s)
n (s)
b (s)

1A ;

0@ t (s)
n (s)
b (s)

1A 2 R9: (103)

The following lemma is about the relation between geodesic torsion and principal curva-
tures of S :

Lemma 2.85 Let p 2 S and � (s) 2 S; s 2 I; is a regular curve with � (0) = p and let fe1; e2g be
the orthonormal basis at TpS satisfying

e1 ^ e2 = N (p) ; �dNp (e1) = k1e1; �dNp (e2) = k2e2: (104)

Denote the angle from e1 to t (0) = �0 (0) by ': Then we have

�g (0) = (k1 � k2) cos' sin': (105)
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Proof. By (102), we have (note that N (0) ^ e1 = e2; N (0) ^ e2 = �e1)

�g (0) = hN 0 (0) ; nint (0)i = hN 0 (0) ; N (0) ^ t (0)i

=

�
N 0 (0) ; N (0) ^

�
(cos') e1 + (sin') e2| {z }

��
= hN 0 (0) ; (cos') e2 � (sin') e1i

= (cos') hN 0 (0) ; e2i � (sin') hN 0 (0) ; e1i :

Now we note that

N 0 (0) = dNp (�
0 (0)) = dNp

�
(cos') e1 + (sin') e2| {z }

�
= (cos') (�k1e1) + (sin') (�k2e2) ;

which gives

�g (0) = (cos') hN 0 (0) ; e2i � (sin') hN 0 (0) ; e1i
= (cos') (sin') (�k2)� (sin') (cos') (�k1) = (k1 � k2) (cos') (sin'):

�

Lemma 2.86 (Relation between torsion and geodesic torsion.) Let p 2 S and � (s) 2 S; s 2
I; is a regular curve with � (0) = p: By (99), we have

n (s) = hn (s) ; nint (s)inint (s) + hn (s) ; N (s)iN (s) ; s 2 I

and if we write it as

n (s) = hn (s) ; N (s)i| {z }N (s) + hn (s) ; nint (s)i| {z }nint (s) ; s 2 I

and let (i.e. the angle between n (s) and N (s) is denoted as � (s))

hn (s) ; N (s)i = cos � (s) ; hn (s) ; nint (s)i = sin � (s) ; s 2 I; (106)

then we have
�0 (s) = � (s)� �g (s) ; s 2 I; (107)

where � (s) is the torsion of � (s) as a curve in R3:

Remark 2.87 If we let hn (s) ; N (s)i = sin � (s) ; then �0 (s) = �g (s)� � (s) ; s 2 I:

Proof. By (102) and (103), we have

(� sin � (s)) �0 (s) = d

ds
hn (s) ; N (s)i = hn0 (s) ; N (s)i+ hn (s) ; N 0 (s)i

= h�k (s) t (s)� � (s) b (s) ; N (s)i+ hn (s) ; �kn (s) t (s) + �g (s)nint (s)i
= �� (s) hb (s) ; N (s)i+ �g (s) hn (s) ; nint (s)i

= �� (s)
�
�hn (s) ; N (s)i| {z }nint (s) + hn (s) ;nint (s)i| {z }N (s) ; N (s)

�
+ �g (s) hn (s) ; nint (s)i

= hn (s) ;nint (s)i| {z } (�g (s)� � (s)) ; where hn (s) ;nint (s)i = sin � (s) :

The proof is done. �

Lemma 2.88 (Lines of curvature have zero geodesic torsion.) Let p 2 S and � (s) 2 S; s 2
I; is a regular curve with � (0) = p: Then � (s) is a line of curvature if and only if �g (s) � 0 along
the whole curve � (s) ; s 2 I:
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Proof. (=)) Assume � (s) is a line of curvature. We have

N 0 (s) = dN�(s) (�
0 (s)) = � (s)�0 (s) ; 8 s 2 I

for some function � (s) and by (102) we also have

N 0 (s) = �kn (s) t (s) + �g (s)nint (s) ; s 2 I: (108)

Comparing the above two identities, we have �g (s) � 0 along the whole curve � (s) ; s 2 I:

((=)Assume �g (s) � 0 for all s 2 I: By the identity (108), we must haveN 0 (s) = �kn (s) t (s) for
all s 2 I; which means that � (s) is a line of curvature. �

2.2 The Gauss Map in Local Coordinates (this is Section 3-3 of the
book).

The purpose of this section is to use local coordinates to study the second fundamental form and
the di¤erential of Gauss map. Let S � R3 be a regular surface with an orientation N: All local
parametrizations x (u; v) of S in this section are assumed to be compatible with the orientation N
of S: That is

N (u; v) = N (x (u; v)) =
xu ^ xv
jxu ^ xvj

for all (u; v) in the domain of x:
Let x (u; v) be a parametrization near p 2 S: Let � (t) = x (u (t) ; v (t)) be a curve in S with

� (0) = p: In the following all computations are evaluated at the point p and at t = 0 unless
otherwise stated. We have

dN (�0) = dN (xuu
0 + xvv

0) =
d

dt
N (u; v) = Nuu

0 +Nvv
0;

where N (u; v) means N (x (u; v)) and we know that dN (xu) = Nu; dN (xv) = Nv:
Since Nu; Nv 2 TpS; we can write(

Nu = dN (xu) = a11xu + a21xv;

Nv = dN (xv) = a12xu + a22xv;
(109)

for some constants aij; 1 � i; j � 2: The above means that the matrix representation M for the
linear map dNp : TpS ! TpS; with respect to the basis fxu;xvg ; is given by

M =

�
a11 a12
a21 a22

�
: (110)

In particular, we have

dN (�0) = dN (xuu
0 + xvv

0) = (a11xu + a21xv)u
0 + (a12xu + a22xv) v

0

= (a11u
0 + a12v

0)xu + (a21u
0 + a22v

0)xv;

which, in terms of matrix formulation, is

M

�
u0

v0

�
=

�
a11 a12
a21 a22

��
u0

v0

�
: (111)
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Remark 2.89 Note that the matrix representation M for dNp with respect to the basis fxu;xvg is
not necessarily symmetric even if dNp is self-adjoint. The matrixM is symmetric if fxu;xvg is
orthonormal due to 8>><>>:

hdN (xu) ;xvi = ha11xu + a21xv;xvi = a21;

hdN (xv) ;xui = ha12xu + a22xv;xui = a12;

hdN (xu) ;xvi = hdN (xv) ;xui :

Now we look at an example: let T (x; y) = (2x;�3y) : R2 ! R2 be a self-adjoint linear map and
choose the non-orthonormal basis fv1; v2g = f(1; 0) ; (1; 1)g : We have

Tv1 = 2v1; T v2 = 5v1 � 3v2:

Therefore, the matrix representation for T : R2 ! R2 with respect to fv1; v2g is

M =

�
2 5
0 �3

�
;

which is not symmetric.

Now we compare two di¤erent ways to express IIp (�0) ; where �0 = xuu0 + xvv0:

First way:

We have

IIp (�
0) = �hdN (�0) ; �0i = �

�
Nuu

0 +Nvv
0| {z }; xuu0 + xvv0

�
= (u0; v0)

�
e f
f g

��
u0

v0

�
= e (u0)

2
+ 2fu0v0 + g (v0)

2
; (112)

where the quantities e; f; g are given by�
e f
f g

�
=

�
�hNu; xui � hNu; xvi
� hNv; xui � hNv; xvi

�
=

�
hN; xuui hN; xvui
hN; xuvi hN; xvvi

�
: (113)

By (112), we conclude the formula:

IIp (Axu +Bxv) = eA2 + 2fAB + gB2; 8 constants A; B: (114)

De�nition 2.90 If x (u; v) : U � R2 ! R3 is a local parametrization at p 2 S with basis
fxu;xvg ; then the above three quantities e; f; g are called the coe¢ cients of the second fun-
damental form with respect to the basis fxu;xvg on TpS:

Remark 2.91 Similar to E; F; G; the three quantities e; f; g are di¤erentiable functions on
their domain. For computational purpose, it is easier to use the formula

e = hN; xuui ; f = hN; xuvi ; g = hN; xvvi

to �nd e; f; g:

Remark 2.92 The �rst-derivative vectors xu; xv; Nu; Nv are tangential, but their second deriva-
tives can point to any directions in R3:
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Second way:

We have

IIp (�
0) = �hdN (�0) ; �0i

= �
�
(a11xu + a21xv)u

0 + (a12xu + a22xv) v
0| {z }; xuu0 + xvv0

�
= � (u0; v0)

�
ha11xu + a21xv;xui ha11xu + a21xv;xvi
ha12xu + a22xv;xui ha12xu + a22xv;xvi

��
u0

v0

�
= � (u0; v0)

�
a11 a21
a12 a22

��
E F
F G

��
u0

v0

�
;

where fE;F;Gg are the coe¢ cients of the �rst fundamental form. Thus, by comparison, the coe¢ -
cients e; f; g of the second fundamental form and the coe¢ cients E; F; G of the �rst fundamental
form are related by �

e f
f g

�
= �

�
a11 a21
a12 a22

��
E F
F G

�
; (115)

or equivalently, �
a11 a21
a12 a22

�
= �

�
e f
f g

��
E F
F G

��1
: (116)

We call (116) the equations of Weingarten.
By �

E F
F G

��1
=
1

4

�
G �F
�F E

�
; 4 = EG� F 2 > 0:

we can express aij; 1 � i; j � 2; in (116) explicitly as

a11 =
fF � eG

4 ; a12 =
gF � fG

4 ; a21 =
eF � fE

4 ; a22 =
fF � gE

4 : (117)

Remark 2.93 By (117), we see that aij; 1 � i; j � 2; are di¤erentiable functions on their
domain.

Remark 2.94 Note that in (116) both matrices on the right hand side are symmetric. But the
product of two symmetric matrices are not symmetric in general.

Remark 2.95 We always have EG� F 2 > 0; but we do not have eg � f 2 > 0 in general.

Since the determinant of �dNp (same as the determinant of dNp) is the Gauss curvature K
of S at p, we immediately have

K = k1k2 = det

�
a11 a12
a21 a22

�
=

eg � f 2

EG� F 2
: (118)

Note that, in general, eg � f 2 may not be positive. We also have the mean curvature H of S at
p, given by

H =
1

2
Tr (�dNp) = �

1

2
(a11 + a22) =

1

2

eG� 2fF + gE

EG� F 2
: (119)

Lemma 2.96 One can also use e; f; g to classify the following: Let p 2 S: We have:

1. p is an elliptic point if eg � f 2 > 0:
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2. p is a hyperbolic point if eg � f 2 < 0:

3. p is a parabolic point if eg � f 2 = 0; but at least one of e; f; g is not zero.

4. p is a planar point if e = f = g = 0 is zero.

Proof. 1 and 2 are clear. For 3 and 4, if dNp = 0; we have Nu = Nv = 0; which implies e = f = g =
0 due to (113). Conversely, if e = f = g = 0; then by (116) we have aij = 0 for all 1 � i; j � 2; which
implies dNp = 0: From this observation, 3 and 4 are clear. �

Lemma 2.97 The two principal curvatures k1; k2 at p 2 S are given by

k1 = H +
p
H2 �K; k1 = H �

p
H2 �K:

where K is the Gauss curvature of S at p and H is the mean curvature of S at p. In particular,
we see that k1; k2 are continuous functions on their domain and di¤erentiable except at umbilical
points (where H2 = K).

Proof. Since k1; k2 are eigenvalues of �dNp; we have

det (�dNp � kiI) = det (dNp + kiI) = 0; i = 1; 2;

i.e. k1; k2 are the two roots of the characteristic polynomial

det (�dNp � �I) = det

�
a11 + � a21
a12 a22 + �

�
= �2 � 2H�+K = 0:

The result follows. �

Example 2.98 Consider the parametrization of the torus given by (a > r > 0)

x (u; v) = ((a+ r cosu) cos v; (a+ r cosu) sin v; r sinu) ; 0 < u < 2�; 0 < v < 2�:

We compute 8>>>>>>>>><>>>>>>>>>:

xu = (�r sinu cos v; �r sinu sin v; r cosu)

xv = (� (a+ r cosu) sin v; (a+ r cosu) cos v; 0)

xuu = (�r cosu cos v; �r cosu sin v; �r sinu)

xuv = (r sinu sin v; �r sinu cos v; 0)

xvv = (� (a+ r cosu) cos v; � (a+ r cosu) sin v; 0)

and get
E = hxu;xui = r2; F = hxu;xvi = 0; G = hxv;xvi = (a+ r cosu)2:

Also we have

e = hN; xuui =
1

jxu ^ xvj
hxu ^ xv; xuui

=
1p

EG� F 2
det (xu;xv;xuu) =

r2(a+ r cosu)

r(a+ r cosu)
= r:

Similarly, we obtain

f =
det (xu;xv;xuv)

r(a+ r cosu)
= 0; g =

det (xu;xv;xvv)

r(a+ r cosu)
= (a+ r cosu) cos u:
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Hence the Gauss curvature K (u; v) at the point x (u; v) is given by

K (u; v) =
eg � f 2

EG� F 2
=

cosu

r(a+ r cosu)
; 0 < u < 2�: (120)

By (120), we can easily locate elliptic points, hyperbolic points and parabolic points on the torus.
See the picture in p. 160 of the book.

Proposition 2.99 (This is Proposition 1 in p. 160.) Let p 2 S be an elliptic point. Then
there exists a neighborhood V of p in S such that all points in V belong to the same side of TpS: If
p 2 S is a hyperbolic point, then in each neighborhood of p there exist points of S in both sides of
TpS:

Remark 2.100 (Important.) There is no result similar to the above proposition for a parabolic
or planar point.

Proof. We use Taylor series expansion. Let x (u; v) be a parametrization near p with x (0; 0) =
p: The distance from the point x (u; v) to the tangent plane TpS is given by

d (u; v) = hx (u; v)� x (0; 0) ; N (p)i :

By Taylor series expansion (for vector-valued functions), we have

x (u; v) = x (0; 0) + xuu+ xvv +
1

2

�
xuuu

2 + 2xuvuv + xvvv
2
�
+ �R;

where the derivatives are evaluated at (0; 0) and �R = �R (u; v) satis�es (note that �R is a vector)

lim
(u;v)!(0;0)

�R

u2 + v2
= 0:

Now we can plug the above into d (u; v) to get

d (u; v) =

*
xuu+ xvv +

1

2

�
xuuu

2 + 2xuvuv + xvvv
2
�

| {z }+ �R; N (p)
+

=
1

2

�
eu2 + 2fuv + gv2

�
| {z }+R = 1

2
IIp (w)| {z }+R (121)

where w = xuu+ xvv 2 TpS and

IIp (w) = �hdNp (xuu+ xvv) ;xuu+ xvvi =
1

2

�
eu2 + 2fuv + gv2

�
and R =



�R; N (p)

�
, with

lim
(u;v)!(0;0)

R

u2 + v2
= 0: (122)

We can rewrite (121) as (we may assume w 6= 0)

d (u; v) = jwj2
�
1

2
IIp

�
w

jwj

�
+

R

jwj2
�
;

w

jwj is unit vector (123)

and note that

IIp

�
w

jwj

�
= normal curvature along direction

w

jwj 2 TpS:
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Moreover, we also have (see (122) and Remark 2.101 below)

lim
(u;v)!(0;0)

R

jwj2
= lim

(u;v)!(0;0)

R

jxuu+ xvvj2

= lim
(u;v)!(0;0)

�
u2 + v2

jxuu+ xvvj2
R

u2 + v2

�
= 0: (124)

If p is an elliptic point (assume that k1 (p) � k2 (p) > 0); then

IIp

�
w

jwj

�
� k2 (p) > 0 for any nonzero w 2 TpS.

Hence for jwj 6= 0 small enough, we have

1

2
IIp

�
w

jwj

�
+

R

jwj2
� k2 (p) +

R

jwj2
> 0; (125)

i.e., for all (u; v) close to (0; 0) ; we have d (u; v) > 0: Thus all such x (u; v) lies on the same side of
TpS:

If p is a hyperbolic point with k1 (p) > 0 and k2 (p) < 0); then there exist (u; v) and (�u; �v) such
that d (u; v) > 0 and d (�u; �v) < 0: Hence (u; v) and (�u; �v) lie on di¤erent sides of TpS: The proof is
done. �

Remark 2.101 This is to explain that the quantity (u2 + v2) = jxuu+ xvvj2 stays bounded as
(u; v)! (0; 0) : We have

u2 + v2

jxuu+ xvvj2
=

u2 + v2

u2 jxu (u; v)j2 + 2uv hxu (u; v) ;xv (u; v)i+ v2 jxv (u; v)j2
(126)

and as (u; v)! (0; 0) ; we have(
jxu (u; v)j2 ! jxu (0; 0)j2 ; jxv (u; v)j2 ! jxv (0; 0)j2

hxu (u; v) ;xv (u; v)i ! hxu (0; 0) ;xv (0; 0)i :

If we write (u; v) as (r cos �; r sin �) ; we get

u2 + v2

u2 jxu (u; v)j2 + 2uv hxu (u; v) ;xv (u; v)i+ v2 jxv (u; v)j2

=
r2

(r2 cos2 �) jxu (�)j2 + (2r2 cos � sin �) hxu (�) ;xv (�)i+
�
r2 sin2 �

�
jxv (�)j2

=
1

(cos2 �) jxu (�)j2 + (2 cos � sin �) hxu (�) ;xv (�)i+
�
sin2 �

�
jxv (�)j2

; (127)

where (�) = (r cos �; r sin �) : As (u; v)! (0; 0) ; the denominator in (127) is like (the angle � may
not have a limit as (u; v)! (0; 0) ; it will move around in the interval [0; 2�])

(cos �; sin �)

�
jxu (0; 0)j2 hxu (0; 0) ;xv (0; 0)i
hxu (0; 0) ;xv (0; 0)i jxv (0; 0)j2

��
cos �
sin �

�
: (128)

Note that the symmetric matrix

A :=

�
jxu (0; 0)j2 hxu (0; 0) ;xv (0; 0)i
hxu (0; 0) ;xv (0; 0)i jxv (0; 0)j2

�
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is positive-de�nite and so as � runs over [0; 2�] ; the minimal quantity in (128) is equal to

min
v2R2;jvj=1

hAv; vi = �2 > 0; (129)

where �2 > 0 is the minimum eigenvalue of A: Hence we have

(cos �; sin �)

�
jxu (0; 0)j2 hxu (0; 0) ;xv (0; 0)i
hxu (0; 0) ;xv (0; 0)i jxv (0; 0)j2

��
cos �
sin �

�
� �2 > 0 (130)

for all � 2 [0; 2�] : This will imply the assertion.

At a parabolic or planar point, there is no result similar to the above proposition. For sim-
plicity, we only look at the case of a planar point. We can compare the following two examples.

Example 2.102 (This is Example 6 in p. 145.) (Read this example by yourself.) Consider
the surface of revolution S obtained by rotaing the curve z = y4 about the z-axis. At the point
p = (0; 0; 0) we have dNp = 0: This is because each normal section of S at p has zero curvature
(since the curve z = y4 has zero curvature at (0; 0)). Therefore, along any unit vector direction
v 2 TpS; the normal curvature is h�dNp (v) ; vi = 0: By Lemma 2.17, we have dNp = 0 and so p is
a planar point. For this example, the whole surface S lies on one side of TpS:

Example 2.103 (This is Example 2 in p. 161.) (Read this example by yourself.) Consider
the Monkey Saddle parametrized by x (u; v) = (x (u; v) ; y (u; v) ; z (u; v)) ; where

x (u; v) = u; y (u; v) = v; z (u; v) = u3 � 3v2u:

One can check that at the point (0; 0; 0) ; the coe¢ cients of the second fundamental form are e =
f = g = 0 (due to xuu = xuv = xvv = 0 at p): Hence it is a planar point. However, in any
neighborhood of this point, there are points on both sides of the tangent plane at (0; 0; 0) (look at
x (u; u) = (u; u; �2u3) ; u 2 (�1;1)). See picture in p. 162.

2.2.1 The Di¤erential Equations for the Asymptotic Curves and the Lines of Curva-
ture.

The equation for asymptotic curves. Let x (u; v) be a parametrization near p = x (0; 0) 2 S
and let e = e (u; v) ; f = f (u; v) ; g = g (u; v) be the coe¢ cients of the second fundamental form.
Let � (t) = x (u (t) ; v (t)) ; t 2 I; be a regular curve on S which is an asymptotic curve. Then we
have

II�(t) (�
0 (t)) = 0 for all t 2 I: (131)

We recall that

II
�(t)
(�0 (t)) = �

D
dN

�(t)
(�0 (t)) ; �0 (t)

E
= �hNuu0 +Nvv

0; xuu
0 + xvv

0i = e (u0)
2
+ 2fu0v0 + g (v0)

2
: (132)

Therefore, in local coordinates, the di¤erential equation for an asymptotic curve x (u (t) ; v (t))
is given by

e (u0)
2
+ 2fu0v0 + g (v0)

2
= 0; t 2 I: (133)

Note that (133) is equivalent to (131).

Remark 2.104 Be careful that the identityD
dN

�(t)
(�0 (t)) ; �0 (t)

E
= 0

does not imply that dN
�(t)
(�0 (t)) = 0: For example, we have the following

M =

�
1 2
2 3

�
;

��
1 2
2 3

��
3
�1

�
;

�
3
�1

��
= 0:
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Remark 2.105 (Important.) The equation (133) is independent of reparametrization of
� (t) : Therefore, (136) is valid regardless of whether � (t) is parametrized by arc length s or not.

In particular, if p 2 S is a hyperbolic point (i.e. eg � f 2 < 0 < 0 at p), then Lemma 2.64
says that there are two asymptotic directions at p: By continuity we know eg � f 2 < 0 in some
neighborhood of p and all points on this neighborhood are hyperbolic and have two asymptotic
directions. In such a case, we have the following interesting fact :

Lemma 2.106 Assume all points on some neighborhood V around p 2 S are hyperbolic point.
A necessary and su¢ cient condition for the coordinate curves (u = u0; v = v (t) or u = u (t) ;
v = v0) near p to be asymptotic curves is e = g = 0 in that neighborhood.

Proof. (=)) If in some neighborhood V of p the two family of coordinate curves u = u0; v =
v (t) and u = u (t) ; v = v0: are all asymptotic curves, then for the �rst case we have u0 � 0 and the
di¤erential equation (133) is satis�ed. Therefore, we obtain

e (u0)
2
+ 2fu0v0 + g (v0)

2
= g (v0)

2
= 0; t 2 I;

which implies g = 0 on V: Similarly for the second case we have e = 0 on V:
((=) If we have e = g = 0 on V; then equation (133) becomes 2fu0v0 = 0; where we know

f 6= 0 everywhere on V (since all points of V are hyperbolic). We see that any coordinate curve in
V can satisfy the equation 2fu0v0 = 0: The proof is done. �

Remark 2.107 The above lemma says that if we can �nd x (u; v) so that e (u; v) = g (u; v) = 0 in
a neighborhood near p; then all coordinate curves of x (u; v) in that neighborhood are asymptotic
curves.

Remark 2.108 Note that if eg� f 2 > 0 at p (elliptic point), there is no asymptotic curve near
p:

What happens for a parabolic point p 2 S; i.e. eg � f 2 = 0 at p (but not e = f = g = 0 at
p). Unlike elliptic or hyperbolic point, a parabolic point can be isolated. In such a case, there is
not much to discuss at all. However, if we have eg � f 2 � 0 on some neighborhood around p; we
have:

Lemma 2.109 Assume all points on some neighborhood V around p 2 S are parabolic points
(for example, a cylinder). A necessary and su¢ cient condition for the coordinate curves u = u0;
v = v (t) ; t 2 I; lying inside V to be asymptotic curves is e 6= 0 (everywhere on V ) and
g = f = 0 (everywhere on V ).

Remark 2.110 If the coordinate curves have the form u = u (t) ; v = v0; t 2 I; then the condition
becomes g 6= 0 (everywhere on V ) and e = f = 0 (everywhere on V ).

Proof. By Lemma 2.64, we know there is exactly one asymptotic direction at each point
of V: Assume the coordinate curve u = u0; v = v (t) ; t 2 I; is an asymptotic curve lying
inside V; then by (133) we have (note that v0 (t) 6= 0 everywhere, for simplicity,we may assume
v (t) = t; t 2 I)

g (u0; v (t)) (v
0 (t))

2
= 0; t 2 I;

which gives g (u0; v (t)) � 0 for all t 2 I and so g = 0 everywhere on V: Since we also have eg�f 2 =
0 everywhere on V; we must have f = 0 everywhere on V: Moreover, since all points on V are
parabolic points, we must have e 6= 0 everywhere on V .
Conversely, if we have e 6= 0; g = f = 0 everywhere on V , then the equation (133) becomes

e (u0)
2
+ 2fu0v0 + g (v0)

2
= e (u0)

2
= 0: (134)

Therefore, any coordinate curve of the form u = u0; v = v (t) ; t 2 I; is an asymptotic curve as
long as it lies inside V: �
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The equation for lines of curvature. We now turn to the di¤erential equation for a line of
curvature: For a line of curvature we have the condition

dN
�(t)
(�0 (t)) = � (t)�0 (t) ; for all t 2 I; for some function � (t) ;

where �0 = xuu0 + xvv0 and by

dN

�
u0

v0

�
=

�
a11 a12
a21 a22

��
u0

v0

�
we have

dN
�(t)
(�0 (t)) = (a11u

0 + a12v
0)xu + (a21u

0 + a22v
0)xv:

we conclude that u0 (t) and v0 (t) satisfy the 2� 2 system of equations8>><>>:
fF � eG

EG� F 2
u0 +

gF � fG

EG� F 2
v0 = �u0 � � � (1)

eF � fE

EG� F 2
u0 +

fF � gE

EG� F 2
v0 = �v0 � � � (2)

(135)

due to the identity �
a11 a21
a12 a22

�
=

1

EG� F 2

�
e f
f g

��
�G F
F �E

�
:

The system (135) is not self-contained (which means we cannot solve it directly), so we
need to eliminate the function �: We consider (1) � v0 � (2) � u0 and get

(fE � eF ) (u0)
2
+ (gE � eG)u0v0 + (gF � fG) (v0)

2
= 0; (136)

which may also be written as as ������
(v0)2 �u0v0 (u0)2

E F G
e f g

������ = 0: (137)

We call (136) the di¤erential equation for a line of curvature: Note that in (136), the coe¢ -
cients E; F; G; e; f; g are all functions of (u; v) :

Remark 2.111 (Important.) The equation (136) is independent of reparametrization of
� (t) : Therefore, (136) is valid regardless of whether � (t) is parametrized by arc length s or not.

We note the following:

Lemma 2.112 (Read this lemma by yourself.) The 2 � 2 system of equations (135) and the
single equation (136) are equivalent.

Proof. If we have equation (136), it clearly imply the system (135).
Conversely, if (136) is satis�ed, then we can infer�

fF � eG

EG� F 2
u0 +

gF � fG

EG� F 2
v0
�
v0 =

�
eF � fE

EG� F 2
u0 +

fF � gE

EG� F 2
v0
�
u0

and if u0 (t) 6= 0 and v0 (t) 6= 0; we can write the above as

1

u0

�
fF � eG

EG� F 2
u0 +

gF � fG

EG� F 2
v0
�
=
1

v0

�
eF � fE

EG� F 2
u0 +

fF � gE

EG� F 2
v0
�
:= � (t) ;
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which gives the system (135) if we use the above function as � (t). If u0 (t) 6= 0 and v0 (t) = 0; then
(136) implies (fE � eF ) (u (t) ; v (t)) = 0 and we can deduce the system (135) again using

� (t) =
fF � eG

EG� F 2
(u (t) ; v (t)) :

Similarly, for u0 (t) = 0 and v0 (t) 6= 0; then (136) implies (gF � fG) (u (t) ; v (t)) = 0 and we can
deduce the system (135) again using

� (t) =
fF � gE

EG� F 2
(u (t) ; v (t)) :

Thus we conclude that (135) is equivalent to (136). �

We conclude:

Lemma 2.113 Assume all points on some neighborhood V around p are nonumbilical point. A
necessary and su¢ cient condition for the coordinate curves (u = u0; v = v (t) or u = u (t) ;
v = v0) lying inside V to be lines of curvature is F = f = 0 on V .

Remark 2.114 In the above lemma, for the statement in the direction ((=) we do not have to
assume that p 2 S is a nonumbilical point.

Proof. For ((=) ; assume x (u; v) is a parametrization with the property F = f � 0 on V . Then
(136) becomes

(gE � eG)u0v0 = 0: (138)

Hence coordinate curves of x (u; v) are lines of curvature. Note that for this part we do not need
p to be a nonumbilical point.
For (=)) ; assume coordinate curves of a parametrization x (u; v) are lines of curvature,

then take u0 = 0; v0 = 1 and u0 = 1; v0 = 0 respectively in (136) to get

gF � fG = 0 and fE � eF = 0; respectively on V: (139)

Since all points on V are nonumbilical and coordinate curves are lines of curvature (the
tangent vectors xu and xv of coordinate curves are pointing to principal directions
and the principal directions are perpendicular), we must have xu ? xv everywhere and
so F � 0 on V: The above identity (139) becomes

fG = 0 and fE = 0: (140)

Since E > 0 and G > 0 everywhere, we must have f � 0 on V: The proof is done. �

2.2.2 Gauss and Mean Curvature for Surfaces of Revolution (Example 4 in p. 163).

Let C be a regular connected curve lying on xz-plane parametrized by arc length parameter
v 2 (a; b) (here we use notation v instead of s):

(x; 0; z) = (' (v) ; 0;  (v)) ; v 2 (a; b) ;

where ('0 (v))2 + ( 0 (v))2 � 1 and ' (v) > 0 for all v 2 (a; b) : Consider the surface of revolution
S generated by C parametrized by

x (u; v) = (' (v) cos u; ' (v) sinu;  (v)) ; 0 < u < 2�; a < v < b;

where ' (v) > 0:
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The coe¢ cients E; F; G of the �rst fundamental form are

E = '2 (v) ; F = 0; G = ('0 (v))
2
+ ( 0 (v))

2
= 1;

p
EG� F 2 = ' (v) :

We compute the coe¢ cients e; f; g of the second fundamental form:

e =
1p

EG� F 2
det (xu;xv;xuu)

=
1

' (v)

��������
�' (v) sinu ' (v) cosu 0

'0 (v) cosu '0 (v) sinu  0 (v)

�' (v) cos u �' (v) sinu 0

�������� = �' (v) 
0 (v) :

Similarly, we obtain

f =
1p

EG� F 2
det (xu;xv;xuv) = 0

and

g =
1p

EG� F 2
det (xu;xv;xvv)

=
1

' (v)

��������
�' (v) sinu ' (v) cosu 0

'0 (v) cos u '0 (v) sinu  0 (v)

'00 (v) cosu '00 (v) sinu  00 (v)

�������� =  0 (v)'00 (v)�  00 (v)'0 (v) :

Since F = f = 0 (this fact remains true even if we do not use arc length parameter), we conclude
that the parallels (v = const:) and the meridians (u = const:) are lines of curvature on
S (because they are coordinate curves). See Remark 2.114 also.
The Gauss curvature is

K =
eg � f 2

EG� F 2
=

eg

EG

= �' (v) 
0 (v) � [ 0 (v)'00 (v)�  00 (v)'0 (v)]

'2 (v)
= �'

00 (v)

' (v)
; (141)

where, for the last identity in (141), we have used the identity

d

dv
('0 (v))

2
+ ( 0 (v))

2
= 2'0 (v)'00 (v) + 2 0 (v) 00 (v) � 0

in the numerator. In particular, we conclude: p 2 S is a parabolic point if either one of the
following occurs (but not both)(

 0 (v) = 0 (same as e = 0),

 0 (v)'00 (v)�  00 (v)'0 (v) = 0 (same as g = 0 or curvature of C is 0)).
(142)

However, if both of the above identities holds, then p 2 S is a planar point.
To �nd the principal curvatures, by the equations of Weingarten (note that F = f = 0), we

have �
a11 a21
a12 a22

�
= �

�
e f
f g

��
E F
F G

��1
= �

�
e
E
0

0 g
G

�
and see that the two eigenvalues k1; k2 of �dN are

k1 =
e

E
=
�' (v) 0 (v)

'2 (v)
=
� 0 (v)
' (v)

(143)
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and
k2 =

g

G
=  0 (v)'00 (v)�  00 (v)'0 (v) : (144)

Thus

K =
eg

EG
= �'

00 (v)

' (v)

and

H =
1

2

eG+ gE

EG
= �1

2

 0 (v)

' (v)
+
1

2
[ 0 (v)'00 (v)�  00 (v)'0 (v)] : (145)

We note that k1; k2; K; H are all independent of u: They depend only on v: This is intuitively
obvious.

To end this example, we state one more interesting result for general surfaces:

Lemma 2.115 If x (u; v) ; (u; v) 2 U � R2; is a local parametrization of a regular surface S �
R3 (not necessarily a surface of revolution) with the property

F (u; v) = f (u; v) = 0; 8 (u; v) 2 U; (146)

then we must have
k1 =

e

E
; k2 =

g

G
on U: (147)

Proof. If x (u; v) satis�es (146), the equations of Weingarten becomes�
a11 a21
a12 a22

�
= �

�
e f
f g

��
E F
F G

��1
= �

�
e
E
0

0 g
G

�
;

which means the �dN has the two eigenvalues e
E
and g

G
and they are k1 and k2 respectively. The

proof is done. �

2.2.3 Gauss and Mean Curvature for Graphs (Example 5 in p. 165).

Assume that S : z = h (x; y) is the graph of a di¤erentiable function de�ned on some open set
U � R2: Clearly we can parametrize S by

x (x; y) = (x; y; h (x; y)) ; (x; y) 2 U
and get 8>>>>><>>>>>:

xx = (1; 0; hx) ; xy = (0; 1; hy) ;

xxx = (0; 0; hxx) ; xxy = (0; 0; hxy) ; xyy = (0; 0; hyy) ;

E (x; y) = 1 + h2x; F (x; y) = hxhy; G (x; y) = 1 + h2y;

EG� F 2 = 1 + h2x + h2y;

and then

N (x; y) =
(�hx; �hy; 1)�
1 + h2x + h2y

�1=2
and 8>>>>>>>>>><>>>>>>>>>>:

e = hN; xxxi =
hxx�

1 + h2x + h2y
�1=2 ;

f = hN; xxyi =
hxy�

1 + h2x + h2y
�1=2 ;

g = hN; xyyi =
hyy�

1 + h2x + h2y
�1=2 :

(148)

We conclude:
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Lemma 2.116 The Gauss curvature and mean curvature of a graphic surface z = h (x; y) ; (x; y) 2
U; are given by

K (x; y) =
eg � f 2

EG� F 2
=

hxxhyy � h2xy�
1 + h2x + h2y

�2 ; (x; y) 2 U (149)

and

H (x; y) =
1

2

eG� 2fF + gE

EG� F 2

=
1

2

�
1 + h2y

�
hxx � 2hxhy + (1 + h2x)hyy�
1 + h2x + h2y

�3=2 ; (x; y) 2 U: (150)

2.2.4 Gauss and Mean Curvature for Graphs with Special Coordinates (continue Ex-
ample 5 in p. 165).

At a point p 2 S; it is possible to choose a coordinate system so that TpS is the xy-plane, N is
pointing in the positive z direction, p is the origin (0; 0; 0), and near p; the surface S is the graph
of a function z = h (x; y) ; (x; y) 2 U; where h satis�es

h (0; 0) = 0; hx (0; 0) = 0; hy (0; 0) = 0: (151)

One can see Exercise 26 in p. 93 for the above properties.
Now if we use the above-mentioned parametrization x (x; y) = (x; y; h (x; y)) ; (x; y) 2 U; we

have
E (0; 0) = 1; F (0; 0) = 0; G (0; 0) = 1 (152)

and
e (0; 0) = hxx (0; 0) ; f (0; 0) = hxy (0; 0) ; g (0; 0) = hyy (0; 0) : (153)

By the equations of Weingarten, we have�
a11 a21
a12 a22

�
= �

�
e f
f g

��
E F
F G

��1
= �

�
e f
f g

�
= �

�
hxx (0; 0) hxy (0; 0)
hxy (0; 0) hyy (0; 0)

�
: (154)

So the map dNp : TpS ! TpS with respect to the orthonormal basis fxx;xyg = f(1; 0) ; (0; 1)g of
the xy-plane is given by

�dNp
�
x
y

�
=

�
hxx (0; 0) hxy (0; 0)
hxy (0; 0) hyy (0; 0)

��
x
y

�
(155)

and the second fundamental form IIp (v) = �hdNp (v) ; vi : TpS ! R is given by

IIp (v) = hxx (0; 0)x
2 + 2hxy (0; 0)xy + hyy (0; 0) y

2; v = (x; y) : (156)

The matrix in (155) is known as the Hessian matrix of h at (0; 0) : Note that at this moment we
may not have hxy (0; 0) = 0: However, we can make hxy (0; 0) = 0 by a rotation in the xy-plane.
If k1 = k2 (denote the common number as k) at p; then we must have �dNp = kI and we have

hxx (0; 0) = k; hxy (0; 0) = 0; hyy (0; 0) = k

for the above orthonormal basis fxx;xyg = f(1; 0) ; (0; 1)g :
If k1 6= k2; the two principal directions e1 and e2 must be perpendicular to each other and we

can rotate the above xy-plane so that the x and y axes are directed along the principal directions
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e1 and e2: That is, after rotation, we have e1 = (1; 0) and e2 = (0; 1). Since they are eigenvectors
of �dNp : TpS ! TpS; by (155), we have

�dNp
�
1
0

�
=

�
hxx (0; 0) hxy (0; 0)
hxy (0; 0) hyy (0; 0)

��
1
0

�
=

�
hxx (0; 0)
hxy (0; 0)

�
= k1

�
1
0

�
and

�dNp
�
0
1

�
=

�
hxy (0; 0)
hyy (0; 0)

�
= k2

�
0
1

�
Hence we must have

hxx (0; 0) = k1; hxy (0; 0) = 0; hyy (0; 0) = k2: (157)

and by (153) we conclude

e (0; 0) = hxx (0; 0) = k1; f (0; 0) = hxy (0; 0) = 0; g (0; 0) = hyy (0; 0) = k2: (158)

The matrix for �dNp with respect to fxx;xyg = f(1; 0) ; (0; 1)g is now diagonal, given by�
hxx (0; 0) hxy (0; 0)
hxy (0; 0) hyy (0; 0)

�
=

�
k1 0
0 k2

�
:

By Taylor series expansion, the function z = h (x; y) near (0; 0) has the form (note that we have
(151))

h (x; y) =
1

2

�
hxx (0; 0)x

2 + 2hxy (0; 0)xy + hyy (0; 0) y
2
�
+R (x; y)

=
1

2

�
k1x

2 + k2y
2
�
+R (x; y) ; (159)

where R (x; y) satis�es

lim
(x;y)!(0;0)

R (x; y)

x2 + y2
= 0:

2.2.5 Geometric Interpretation of the Gauss Curvature.

Let S and ~S be two orientable surfaces with orientation N (di¤erentiable unit normal vector �eld
on S) and ~N (di¤erentiable unit normal vector �eld on ~S) respectively. Let ' : S ! ~S be a
di¤erentiable map and assume at p 2 S the map d'p : TpS ! T'(p) ~S is nonsingular.

De�nition 2.117 We say the map ' : S ! ~S is orientation-preserving at p if, for any positive
basis fv; wg on TpS (which means v^w is pointing in the direction of N (p) ; i.e. det (v; w;N (p)) >
0), the basis fd'p (v) ; d'p (w)g on T'(p) ~S is also positive on T'(p) ~S (which means d'p (v)^d'p (w)
is pointing in the direction of ~N (' (p)) ; i.e. det

�
d'p (v) ; d'p (w) ; ~N (' (p))

�
> 0)): Otherwise, the

map ' : S ! ~S is called orientation-reversing at p; which means that d'p : TpS ! T'(p) ~S maps
some positive basis on TpS into negative basis on T'(p) ~S fv; wg :

Let S be an orientable surface with orientation N : S ! S2 and dNp is nonsingular at p 2
S: By the inverse function theorem, there is a small neighborhood V � S around p 2 S such
that

N : V � S ! N (V ) (denote it as ~V ) � S2 (160)

is a di¤eomorphism and either K > 0 everywhere on V or K < 0 everywhere on V:
The Gauss map N : V ! ~V will induce an orientation on ~V � S2 (since we can identify

TN(p)S
2 as TpS and choose the orientation on TN(p)S2 to be the same as the orientation on TpS): By

the identity
dNq (v) ^ dNq (w) = K (q) (v ^ w) ; 8 q 2 V; v; w 2 TqS; (161)
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we see that ifK > 0 everywhere on V; then both v^w and dNq (v)^dNq (w) are pointing to the same
direction. That is, if fv; wg is positive on TqS (the domain space of dNq), then fdNq (v) ; dNq (w)g
is also positive on TqS (the target space of dNq). By de�nition, the Gauss map N : V ! ~V is
orientation-preserving at any q 2 V: On the other hand, if K < 0 everywhere on V; the Gauss
map N : V ! ~V is orientation-reversing at any q 2 V . Therefore, we conclude:

Lemma 2.118 N : V ! ~V is orientation-preserving (orientation-reversing) at all q 2 V if and
only if K > 0 (K < 0) everywhere on V:

Remark 2.119 Let � (s) 2 V (on V there is an orientation N); s 2 I; be a small simple closed
curve enclosing p in its interior and is counterclockwise, which means that when you walk along
� (s) 2 V in the length-increasing direction, the vector �0 (s0)^�0 (s0 + ") (" > 0 is small) is pointing
to the direction of N (� (s0)) for all s0 2 I: Now by (161) we have

d

ds

����
s=s0

N (� (s)) ^ d

ds

����
s=s0+"

N (� (s)) ; N (� (s)) 2 S2

=
�
dN�(s0) (�

0 (s0)) ^ dN�(s0+") (�0 (s0 + "))
�
� K (� (s0)) [�

0 (s0) ^ �0 (s0 + ")] : (162)

If we have K > 0 on V; then the vector dN�(s0) (�
0 (s0)) ^ dN�(s0+") (�0 (s0 + ")) is also pointing

to the direction of N (� (s0)) (note that N (� (s0)) 2 S2 and we choose the normal N on S2 at
N (� (s0)) as N (� (s0)) ; i.e. N (N (� (s0))) = N (� (s0))). Therefore, the curve N (� (s)) on S2

also has counterclockwise orientation as s is increasing. On the other hand, if K < 0 on V; the
curve N (� (s)) on S2 has the property that d

ds

��
s=s0

N (� (s)) ^ d
ds

��
s=s0+"

N (� (s)) is pointing to the
direction of �N (� (s0)) : Therefore, the curve N (� (s)) on S2 has clockwise orientation as s is
increasing.

We use the convention that if K > 0 in V; then the area of the set N (V ) in S2 has a positive
sign. While if K < 0 in V; then the area of the set N (V ) in S2 has a negative sign. Under this
convention, N (V ) has a signed area.
With the above convention, we can state the following:

Proposition 2.120 (This is Proposition 2 in p. 169.) (Geometric meaning of the Gauss
curvature.) Let p 2 S (with Gauss map N : S ! S2) such that K (p) 6= 0; and V be a connected
neighborhood around p 2 S such that either K > 0 in V or K < 0 in V (here N : V ! N (V ) is a
di¤eomorphism). Then

K (p) = lim
A!0

A0sign
A

; (163)

where A is the area of the region B � V containing p; A0sign is the signed area of N (B) in S
2;

and the limit is taken through a sequence of regions Bn that converges to p in the sense that any
sphere around p contains all Bn; for n su¢ ciently large.

Remark 2.121 Explain the meaning of Bn that converges to p as n!1:

Proof. The area of B � S is given by

A =

ZZ
R

jxu ^ xvj dudv;

where x (u; v) : R � U � R2 ! S is a parametrization near p 2 S with x (R) = B: Also the area of
the region N (B) in S2 is given by

A0 =

ZZ
R

jNu ^Nvj dudv
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since N (u; v) = N (x (u; v)) : R � U � R2 ! S2 is a parametrization nearN (p) 2 S2 withN (R) =
N (B) : By the identity (see Lemma 2.78)

jNu ^Nvj = jdN (xu) ^ dN (xv)j = jKj jxu ^ xvj ;

we have

A0sign =

ZZ
R

K jxu ^ xvj dudv:

Hence

lim
A!0

A0sign
A

= lim
R!0

1
R

RR
R
K jxu ^ xvj dudv

1
R

RR
R
jxu ^ xvj dudv

=
K (p) jxu ^ xvj (p)
jxu ^ xvj (p)

= K (p) :

�

Remark 2.122 We can compare the above lemma with the curve case. Recall that for a regular
parametrized curve C � R2 we have

signed curvature = k (p) =
d�

ds
(p) = lim

4s!0

4�
4s ; � is the tangent angle,

where 4� is the signed length on the unit circle S1 of the image of 4s under the map of the
unit tangent vector T (4� > 0 for counterclockwise orientation curve and 4� < 0 for clockwise
orientation curve). But it is the same as the signed length on S1 of the image of 4s under the
map of the unit normal vector N:

To Be Continued

2.2.6 The Hessain of a regular surface in R3.
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